外泌体和微RNA:深入了解它们在热引起的皮肤损伤、伤口愈合和疤痕中的作用。

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yong Wang, Xiufang Zhou
{"title":"外泌体和微RNA:深入了解它们在热引起的皮肤损伤、伤口愈合和疤痕中的作用。","authors":"Yong Wang, Xiufang Zhou","doi":"10.1007/s00438-024-02183-w","DOIUrl":null,"url":null,"abstract":"<p><p>A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes and microRNAs: insights into their roles in thermal-induced skin injury, wound healing and scarring.\",\"authors\":\"Yong Wang, Xiufang Zhou\",\"doi\":\"10.1007/s00438-024-02183-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02183-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02183-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

烧伤是一种由热、化学物质、电、阳光或辐射对皮肤或其他组织造成的伤害。烧伤已被证实可能对人体造成长期的不利影响。传统的治疗方法无法有效、轻松地彻底治愈这些烧伤。这些治疗方法的主要潜在缺点包括增生性瘢痕、挛缩、感染、坏死、过敏反应、愈合时间延长以及美容效果不理想。目前的治疗方法存在这些缺点和局限性,因此有必要寻找和开发更好、更有效的疗法。微小核糖核酸(miRNA)的再生潜力以及从各类细胞(尤其是干细胞)中提取的外泌体miRNA,具有超越传统烧伤伤口愈合治疗程序的优势。由于干细胞在各种应用中的愈合效率有所提高,人们对使用多种类型的干细胞越来越感兴趣。干细胞有几大显著特点,包括能促进烧伤伤口更有效、更快速地愈合,降低伤口处的炎症水平,减少疤痕组织的形成和纤维化。在这篇综述中,我们讨论了伤口愈合的各个阶段、外泌体和 miRNA 在改善热引起的伤口方面的作用,以及 miRNA 在防止形成增生性疤痕方面的影响。从 2000 年至今,有关使用不同细胞衍生的外泌体 miRNA 和 miRNA 治疗热烧伤的临床前和临床研究均有记载。研究表明,使用不同细胞衍生的外泌体 miRNA 和 miRNA 可改善烧伤创面的愈合。外泌体 miRNAs 迁移到伤口部位可抑制细胞凋亡、诱导自噬、再上皮化、肉芽形成、皮肤附属物再生和血管生成。总之,这项研究强调了将 miRNA 和外泌体研究整合到烧伤治疗策略中的重要性,为新型治疗方法铺平了道路,可显著改善患者的预后和康复时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exosomes and microRNAs: insights into their roles in thermal-induced skin injury, wound healing and scarring.

A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信