{"title":"外泌体和微RNA:深入了解它们在热引起的皮肤损伤、伤口愈合和疤痕中的作用。","authors":"Yong Wang, Xiufang Zhou","doi":"10.1007/s00438-024-02183-w","DOIUrl":null,"url":null,"abstract":"<p><p>A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes and microRNAs: insights into their roles in thermal-induced skin injury, wound healing and scarring.\",\"authors\":\"Yong Wang, Xiufang Zhou\",\"doi\":\"10.1007/s00438-024-02183-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02183-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02183-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exosomes and microRNAs: insights into their roles in thermal-induced skin injury, wound healing and scarring.
A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.