Daan G J Linders, Okker D Bijlstra, Laura C Fallert, N Geeske Dekker-Ensink, Taryn L March, Martin Pool, Ethan Walker, Brian Straight, James P Basilion, Matthew Bogyo, Jacobus Burggraaf, Denise E Hilling, Alexander L Vahrmeijer, Peter J K Kuppen, A Stijn L P Crobach
{"title":"对乳腺癌患者中胰蛋白酶 B、L 和 S 表达的免疫组化评估","authors":"Daan G J Linders, Okker D Bijlstra, Laura C Fallert, N Geeske Dekker-Ensink, Taryn L March, Martin Pool, Ethan Walker, Brian Straight, James P Basilion, Matthew Bogyo, Jacobus Burggraaf, Denise E Hilling, Alexander L Vahrmeijer, Peter J K Kuppen, A Stijn L P Crobach","doi":"10.1007/s11307-024-01955-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cysteine cathepsins are proteases that play a role in normal cellular physiology and neoplastic transformation. Elevated expression and enzymatic activity of cathepsins in breast cancer (BCa) indicates their potential as a target for tumor imaging. In particular cathepsin B (CTSB), L (CTSL), and S (CTSS) are used as targets for near-infrared (NIR) fluorescence imaging (FI), a technique that allows real-time intraoperative tumor visualization and resection margin assessment. Therefore, this immunohistochemical study explores CTSB, CTSL, and CTSS expression levels in a large breast cancer patient cohort, to investigate in which BCa patients the use of cathepsin-targeted NIR FI may have added value.</p><p><strong>Procedures: </strong>Protein expression was analyzed in tumor tissue microarrays (TMA) of BCa patients using immunohistochemistry and quantified as a total immunostaining score (TIS), ranging from 0-12. In total, the tissues of 557 BCa patients were included in the TMA.</p><p><strong>Results: </strong>CTSB, CTSL, and CTSS were successfully scored in respectively 340, 373 and 252 tumors. All tumors showed CTSB, CTSL, and/or CTSS expression to some extent (TIS > 0). CTSB, CTSL, and CTSS expression was scored as high (TIS > 6) in respectively 28%, 80%, and 18% of tumors. In 89% of the tumors scored for all three cathepsins, the expression level of one or more of these proteases was scored as high (TIS > 6). Tumors showed significantly higher cathepsin expression levels with advancing Bloom-Richardson grade (p < 0.05). Cathepsin expression was highest in estrogen receptor (ER)-negative, human epidermal growth factor receptor 2(HER2)-positive and triple-negative (TN) tumors. There was no significant difference in cathepsin expression between tumors that were treated with neoadjuvant systemic therapy and tumors that were not.</p><p><strong>Conclusions: </strong>The expression of at least one of the cysteine cathepsins B, L and S in all breast tumor tissues tested suggests that cathepsin-activatable imaging agents with broad reactivity for these three proteases will likely be effective in the vast majority of breast cancer patients, regardless of molecular subtype and treatment status. Patients with high grade ER-negative, HER2-positive, or TN tumors might show higher imaging signals.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunohistochemical Evaluation of Cathepsin B, L, and S Expression in Breast Cancer Patients.\",\"authors\":\"Daan G J Linders, Okker D Bijlstra, Laura C Fallert, N Geeske Dekker-Ensink, Taryn L March, Martin Pool, Ethan Walker, Brian Straight, James P Basilion, Matthew Bogyo, Jacobus Burggraaf, Denise E Hilling, Alexander L Vahrmeijer, Peter J K Kuppen, A Stijn L P Crobach\",\"doi\":\"10.1007/s11307-024-01955-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Cysteine cathepsins are proteases that play a role in normal cellular physiology and neoplastic transformation. Elevated expression and enzymatic activity of cathepsins in breast cancer (BCa) indicates their potential as a target for tumor imaging. In particular cathepsin B (CTSB), L (CTSL), and S (CTSS) are used as targets for near-infrared (NIR) fluorescence imaging (FI), a technique that allows real-time intraoperative tumor visualization and resection margin assessment. Therefore, this immunohistochemical study explores CTSB, CTSL, and CTSS expression levels in a large breast cancer patient cohort, to investigate in which BCa patients the use of cathepsin-targeted NIR FI may have added value.</p><p><strong>Procedures: </strong>Protein expression was analyzed in tumor tissue microarrays (TMA) of BCa patients using immunohistochemistry and quantified as a total immunostaining score (TIS), ranging from 0-12. In total, the tissues of 557 BCa patients were included in the TMA.</p><p><strong>Results: </strong>CTSB, CTSL, and CTSS were successfully scored in respectively 340, 373 and 252 tumors. All tumors showed CTSB, CTSL, and/or CTSS expression to some extent (TIS > 0). CTSB, CTSL, and CTSS expression was scored as high (TIS > 6) in respectively 28%, 80%, and 18% of tumors. In 89% of the tumors scored for all three cathepsins, the expression level of one or more of these proteases was scored as high (TIS > 6). Tumors showed significantly higher cathepsin expression levels with advancing Bloom-Richardson grade (p < 0.05). Cathepsin expression was highest in estrogen receptor (ER)-negative, human epidermal growth factor receptor 2(HER2)-positive and triple-negative (TN) tumors. There was no significant difference in cathepsin expression between tumors that were treated with neoadjuvant systemic therapy and tumors that were not.</p><p><strong>Conclusions: </strong>The expression of at least one of the cysteine cathepsins B, L and S in all breast tumor tissues tested suggests that cathepsin-activatable imaging agents with broad reactivity for these three proteases will likely be effective in the vast majority of breast cancer patients, regardless of molecular subtype and treatment status. Patients with high grade ER-negative, HER2-positive, or TN tumors might show higher imaging signals.</p>\",\"PeriodicalId\":18760,\"journal\":{\"name\":\"Molecular Imaging and Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11307-024-01955-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-024-01955-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Immunohistochemical Evaluation of Cathepsin B, L, and S Expression in Breast Cancer Patients.
Purpose: Cysteine cathepsins are proteases that play a role in normal cellular physiology and neoplastic transformation. Elevated expression and enzymatic activity of cathepsins in breast cancer (BCa) indicates their potential as a target for tumor imaging. In particular cathepsin B (CTSB), L (CTSL), and S (CTSS) are used as targets for near-infrared (NIR) fluorescence imaging (FI), a technique that allows real-time intraoperative tumor visualization and resection margin assessment. Therefore, this immunohistochemical study explores CTSB, CTSL, and CTSS expression levels in a large breast cancer patient cohort, to investigate in which BCa patients the use of cathepsin-targeted NIR FI may have added value.
Procedures: Protein expression was analyzed in tumor tissue microarrays (TMA) of BCa patients using immunohistochemistry and quantified as a total immunostaining score (TIS), ranging from 0-12. In total, the tissues of 557 BCa patients were included in the TMA.
Results: CTSB, CTSL, and CTSS were successfully scored in respectively 340, 373 and 252 tumors. All tumors showed CTSB, CTSL, and/or CTSS expression to some extent (TIS > 0). CTSB, CTSL, and CTSS expression was scored as high (TIS > 6) in respectively 28%, 80%, and 18% of tumors. In 89% of the tumors scored for all three cathepsins, the expression level of one or more of these proteases was scored as high (TIS > 6). Tumors showed significantly higher cathepsin expression levels with advancing Bloom-Richardson grade (p < 0.05). Cathepsin expression was highest in estrogen receptor (ER)-negative, human epidermal growth factor receptor 2(HER2)-positive and triple-negative (TN) tumors. There was no significant difference in cathepsin expression between tumors that were treated with neoadjuvant systemic therapy and tumors that were not.
Conclusions: The expression of at least one of the cysteine cathepsins B, L and S in all breast tumor tissues tested suggests that cathepsin-activatable imaging agents with broad reactivity for these three proteases will likely be effective in the vast majority of breast cancer patients, regardless of molecular subtype and treatment status. Patients with high grade ER-negative, HER2-positive, or TN tumors might show higher imaging signals.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.