Natalie A Petek-Seoane, Johnny Rodriguez, Alan I Derman, Siobhan G Royal, Samuel J Lord, Rosalie Lawrence, Joe Pogliano, R Dyche Mullins
{"title":"Alp7A 的聚合物动力学揭示了两个临界浓度如何控制动态不稳定的类肌动蛋白的组装。","authors":"Natalie A Petek-Seoane, Johnny Rodriguez, Alan I Derman, Siobhan G Royal, Samuel J Lord, Rosalie Lawrence, Joe Pogliano, R Dyche Mullins","doi":"10.1091/mbc.E23-11-0440","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in <i>Bacillus subtilis</i>. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (cc<sub>N</sub> = 10.3 µM), but a much lower critical concentration for filament elongation (cc<sub>E</sub> = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease cc<sub>N</sub> into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating cc<sub>N</sub> independently of cc<sub>E</sub>.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar145"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins.\",\"authors\":\"Natalie A Petek-Seoane, Johnny Rodriguez, Alan I Derman, Siobhan G Royal, Samuel J Lord, Rosalie Lawrence, Joe Pogliano, R Dyche Mullins\",\"doi\":\"10.1091/mbc.E23-11-0440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in <i>Bacillus subtilis</i>. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (cc<sub>N</sub> = 10.3 µM), but a much lower critical concentration for filament elongation (cc<sub>E</sub> = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease cc<sub>N</sub> into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating cc<sub>N</sub> independently of cc<sub>E</sub>.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"ar145\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E23-11-0440\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E23-11-0440","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins.
Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in Bacillus subtilis. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (ccN = 10.3 µM), but a much lower critical concentration for filament elongation (ccE = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease ccN into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating ccN independently of ccE.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.