T Gaczorek, K Dudek, U Fritz, L Bahri-Sfar, S J E Baird, F Bonhomme, C Dufresnes, V Gvoždík, D Irwin, P Kotlík, S Marková, P McGinnity, M Migalska, J Moravec, L Natola, M Pabijan, K P Phillips, Y Schöneberg, A Souissi, J Radwan, W Babik
{"title":"MHC基因在脊椎动物杂交区的广泛适应性导入。","authors":"T Gaczorek, K Dudek, U Fritz, L Bahri-Sfar, S J E Baird, F Bonhomme, C Dufresnes, V Gvoždík, D Irwin, P Kotlík, S Marková, P McGinnity, M Migalska, J Moravec, L Natola, M Pabijan, K P Phillips, Y Schöneberg, A Souissi, J Radwan, W Babik","doi":"10.1093/molbev/msae201","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific introgression is a potentially important source of novel variation of adaptive significance. Although multiple cases of adaptive introgression are well documented, broader generalizations about its targets and mechanisms are lacking. Multiallelic balancing selection, particularly when acting through rare allele advantage, is an evolutionary mechanism expected to favor adaptive introgression. This is because introgressed alleles are likely to confer an immediate selective advantage, facilitating their establishment in the recipient species even in the face of strong genomic barriers to introgression. Vertebrate major histocompatibility complex genes are well-established targets of long-term multiallelic balancing selection, so widespread adaptive major histocompatibility complex introgression is expected. Here, we evaluate this hypothesis using data from 29 hybrid zones formed by fish, amphibians, squamates, turtles, birds, and mammals at advanced stages of speciation. The key prediction of more extensive major histocompatibility complex introgression compared to genome-wide introgression was tested with three complementary statistical approaches. We found evidence for widespread adaptive introgression of major histocompatibility complex genes, providing a link between the process of adaptive introgression and an underlying mechanism. Our work identifies major histocompatibility complex introgression as a general mechanism by which species can acquire novel, and possibly regain previously lost, variation that may enhance defense against pathogens and increase adaptive potential.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Widespread Adaptive Introgression of Major Histocompatibility Complex Genes across Vertebrate Hybrid Zones.\",\"authors\":\"T Gaczorek, K Dudek, U Fritz, L Bahri-Sfar, S J E Baird, F Bonhomme, C Dufresnes, V Gvoždík, D Irwin, P Kotlík, S Marková, P McGinnity, M Migalska, J Moravec, L Natola, M Pabijan, K P Phillips, Y Schöneberg, A Souissi, J Radwan, W Babik\",\"doi\":\"10.1093/molbev/msae201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interspecific introgression is a potentially important source of novel variation of adaptive significance. Although multiple cases of adaptive introgression are well documented, broader generalizations about its targets and mechanisms are lacking. Multiallelic balancing selection, particularly when acting through rare allele advantage, is an evolutionary mechanism expected to favor adaptive introgression. This is because introgressed alleles are likely to confer an immediate selective advantage, facilitating their establishment in the recipient species even in the face of strong genomic barriers to introgression. Vertebrate major histocompatibility complex genes are well-established targets of long-term multiallelic balancing selection, so widespread adaptive major histocompatibility complex introgression is expected. Here, we evaluate this hypothesis using data from 29 hybrid zones formed by fish, amphibians, squamates, turtles, birds, and mammals at advanced stages of speciation. The key prediction of more extensive major histocompatibility complex introgression compared to genome-wide introgression was tested with three complementary statistical approaches. We found evidence for widespread adaptive introgression of major histocompatibility complex genes, providing a link between the process of adaptive introgression and an underlying mechanism. Our work identifies major histocompatibility complex introgression as a general mechanism by which species can acquire novel, and possibly regain previously lost, variation that may enhance defense against pathogens and increase adaptive potential.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msae201\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae201","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Widespread Adaptive Introgression of Major Histocompatibility Complex Genes across Vertebrate Hybrid Zones.
Interspecific introgression is a potentially important source of novel variation of adaptive significance. Although multiple cases of adaptive introgression are well documented, broader generalizations about its targets and mechanisms are lacking. Multiallelic balancing selection, particularly when acting through rare allele advantage, is an evolutionary mechanism expected to favor adaptive introgression. This is because introgressed alleles are likely to confer an immediate selective advantage, facilitating their establishment in the recipient species even in the face of strong genomic barriers to introgression. Vertebrate major histocompatibility complex genes are well-established targets of long-term multiallelic balancing selection, so widespread adaptive major histocompatibility complex introgression is expected. Here, we evaluate this hypothesis using data from 29 hybrid zones formed by fish, amphibians, squamates, turtles, birds, and mammals at advanced stages of speciation. The key prediction of more extensive major histocompatibility complex introgression compared to genome-wide introgression was tested with three complementary statistical approaches. We found evidence for widespread adaptive introgression of major histocompatibility complex genes, providing a link between the process of adaptive introgression and an underlying mechanism. Our work identifies major histocompatibility complex introgression as a general mechanism by which species can acquire novel, and possibly regain previously lost, variation that may enhance defense against pathogens and increase adaptive potential.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.