Lin Gao, Wenju Liu, Bingzi Kang, Han Wu, Jiajia He, Xiaolu Li, Gangqin Xi, Shuangmu Zhuo
{"title":"AutoLNMNet:使用金字塔视觉转换器和多光子显微镜数据估算 EGC 淋巴结转移的自动网络","authors":"Lin Gao, Wenju Liu, Bingzi Kang, Han Wu, Jiajia He, Xiaolu Li, Gangqin Xi, Shuangmu Zhuo","doi":"10.1002/jemt.24705","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lymph-node status is important in decision-making during early gastric cancer (EGC) treatment. Currently, endoscopic submucosal dissection is the mainstream treatment for EGC. However, it is challenging for even experienced endoscopists to accurately diagnose and treat EGC. Multiphoton microscopy can extract the morphological features of collagen fibers from tissues. The characteristics of collagen fibers can be used to assess the lymph-node metastasis status in patients with EGC. First, we compared the accuracy of four deep learning models (VGG16, ResNet34, MobileNetV2, and PVTv2) in training preprocessed images and test datasets. Next, we integrated the features of the best-performing model, which was PVTv2, with manual and clinical features to develop a novel model called AutoLNMNet. The prediction accuracy of AutoLNMNet for the no metastasis (Ly0) and metastasis in lymph nodes (Ly1) stages reached 0.92, which was 0.3% higher than that of PVTv2. The receiver operating characteristics of AutoLNMNet in quantifying Ly0 and Ly1 stages were 0.97 and 0.97, respectively. Therefore, AutoLNMNet is highly reliable and accurate in detecting lymph-node metastasis, providing an important tool for the early diagnosis and treatment of EGC.</p>\n </div>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":"88 1","pages":"315-322"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoLNMNet: Automated Network for Estimating Lymph-Node Metastasis in EGC Using a Pyramid Vision Transformer and Data Derived From Multiphoton Microscopy\",\"authors\":\"Lin Gao, Wenju Liu, Bingzi Kang, Han Wu, Jiajia He, Xiaolu Li, Gangqin Xi, Shuangmu Zhuo\",\"doi\":\"10.1002/jemt.24705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Lymph-node status is important in decision-making during early gastric cancer (EGC) treatment. Currently, endoscopic submucosal dissection is the mainstream treatment for EGC. However, it is challenging for even experienced endoscopists to accurately diagnose and treat EGC. Multiphoton microscopy can extract the morphological features of collagen fibers from tissues. The characteristics of collagen fibers can be used to assess the lymph-node metastasis status in patients with EGC. First, we compared the accuracy of four deep learning models (VGG16, ResNet34, MobileNetV2, and PVTv2) in training preprocessed images and test datasets. Next, we integrated the features of the best-performing model, which was PVTv2, with manual and clinical features to develop a novel model called AutoLNMNet. The prediction accuracy of AutoLNMNet for the no metastasis (Ly0) and metastasis in lymph nodes (Ly1) stages reached 0.92, which was 0.3% higher than that of PVTv2. The receiver operating characteristics of AutoLNMNet in quantifying Ly0 and Ly1 stages were 0.97 and 0.97, respectively. Therefore, AutoLNMNet is highly reliable and accurate in detecting lymph-node metastasis, providing an important tool for the early diagnosis and treatment of EGC.</p>\\n </div>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\"88 1\",\"pages\":\"315-322\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jemt.24705\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jemt.24705","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
AutoLNMNet: Automated Network for Estimating Lymph-Node Metastasis in EGC Using a Pyramid Vision Transformer and Data Derived From Multiphoton Microscopy
Lymph-node status is important in decision-making during early gastric cancer (EGC) treatment. Currently, endoscopic submucosal dissection is the mainstream treatment for EGC. However, it is challenging for even experienced endoscopists to accurately diagnose and treat EGC. Multiphoton microscopy can extract the morphological features of collagen fibers from tissues. The characteristics of collagen fibers can be used to assess the lymph-node metastasis status in patients with EGC. First, we compared the accuracy of four deep learning models (VGG16, ResNet34, MobileNetV2, and PVTv2) in training preprocessed images and test datasets. Next, we integrated the features of the best-performing model, which was PVTv2, with manual and clinical features to develop a novel model called AutoLNMNet. The prediction accuracy of AutoLNMNet for the no metastasis (Ly0) and metastasis in lymph nodes (Ly1) stages reached 0.92, which was 0.3% higher than that of PVTv2. The receiver operating characteristics of AutoLNMNet in quantifying Ly0 and Ly1 stages were 0.97 and 0.97, respectively. Therefore, AutoLNMNet is highly reliable and accurate in detecting lymph-node metastasis, providing an important tool for the early diagnosis and treatment of EGC.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.