Lin Gao, Wenju Liu, Bingzi Kang, Han Wu, Jiajia He, Xiaolu Li, Gangqin Xi, Shuangmu Zhuo
{"title":"AutoLNMNet:使用金字塔视觉转换器和多光子显微镜数据估算 EGC 淋巴结转移的自动网络","authors":"Lin Gao, Wenju Liu, Bingzi Kang, Han Wu, Jiajia He, Xiaolu Li, Gangqin Xi, Shuangmu Zhuo","doi":"10.1002/jemt.24705","DOIUrl":null,"url":null,"abstract":"<p><p>Lymph-node status is important in decision-making during early gastric cancer (EGC) treatment. Currently, endoscopic submucosal dissection is the mainstream treatment for EGC. However, it is challenging for even experienced endoscopists to accurately diagnose and treat EGC. Multiphoton microscopy can extract the morphological features of collagen fibers from tissues. The characteristics of collagen fibers can be used to assess the lymph-node metastasis status in patients with EGC. First, we compared the accuracy of four deep learning models (VGG16, ResNet34, MobileNetV2, and PVTv2) in training preprocessed images and test datasets. Next, we integrated the features of the best-performing model, which was PVTv2, with manual and clinical features to develop a novel model called AutoLNMNet. The prediction accuracy of AutoLNMNet for the no metastasis (Ly0) and metastasis in lymph nodes (Ly1) stages reached 0.92, which was 0.3% higher than that of PVTv2. The receiver operating characteristics of AutoLNMNet in quantifying Ly0 and Ly1 stages were 0.97 and 0.97, respectively. Therefore, AutoLNMNet is highly reliable and accurate in detecting lymph-node metastasis, providing an important tool for the early diagnosis and treatment of EGC.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoLNMNet: Automated Network for Estimating Lymph-Node Metastasis in EGC Using a Pyramid Vision Transformer and Data Derived From Multiphoton Microscopy.\",\"authors\":\"Lin Gao, Wenju Liu, Bingzi Kang, Han Wu, Jiajia He, Xiaolu Li, Gangqin Xi, Shuangmu Zhuo\",\"doi\":\"10.1002/jemt.24705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymph-node status is important in decision-making during early gastric cancer (EGC) treatment. Currently, endoscopic submucosal dissection is the mainstream treatment for EGC. However, it is challenging for even experienced endoscopists to accurately diagnose and treat EGC. Multiphoton microscopy can extract the morphological features of collagen fibers from tissues. The characteristics of collagen fibers can be used to assess the lymph-node metastasis status in patients with EGC. First, we compared the accuracy of four deep learning models (VGG16, ResNet34, MobileNetV2, and PVTv2) in training preprocessed images and test datasets. Next, we integrated the features of the best-performing model, which was PVTv2, with manual and clinical features to develop a novel model called AutoLNMNet. The prediction accuracy of AutoLNMNet for the no metastasis (Ly0) and metastasis in lymph nodes (Ly1) stages reached 0.92, which was 0.3% higher than that of PVTv2. The receiver operating characteristics of AutoLNMNet in quantifying Ly0 and Ly1 stages were 0.97 and 0.97, respectively. Therefore, AutoLNMNet is highly reliable and accurate in detecting lymph-node metastasis, providing an important tool for the early diagnosis and treatment of EGC.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
AutoLNMNet: Automated Network for Estimating Lymph-Node Metastasis in EGC Using a Pyramid Vision Transformer and Data Derived From Multiphoton Microscopy.
Lymph-node status is important in decision-making during early gastric cancer (EGC) treatment. Currently, endoscopic submucosal dissection is the mainstream treatment for EGC. However, it is challenging for even experienced endoscopists to accurately diagnose and treat EGC. Multiphoton microscopy can extract the morphological features of collagen fibers from tissues. The characteristics of collagen fibers can be used to assess the lymph-node metastasis status in patients with EGC. First, we compared the accuracy of four deep learning models (VGG16, ResNet34, MobileNetV2, and PVTv2) in training preprocessed images and test datasets. Next, we integrated the features of the best-performing model, which was PVTv2, with manual and clinical features to develop a novel model called AutoLNMNet. The prediction accuracy of AutoLNMNet for the no metastasis (Ly0) and metastasis in lymph nodes (Ly1) stages reached 0.92, which was 0.3% higher than that of PVTv2. The receiver operating characteristics of AutoLNMNet in quantifying Ly0 and Ly1 stages were 0.97 and 0.97, respectively. Therefore, AutoLNMNet is highly reliable and accurate in detecting lymph-node metastasis, providing an important tool for the early diagnosis and treatment of EGC.