{"title":"利用超滤技术分离完整和空腺病毒外壳的新方法。","authors":"Deepraj Sarmah, Scott M Husson","doi":"10.3390/membranes14090194","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated viral vectors (AAVs) are the predominant viral vectors used for gene therapy applications. A significant challenge in obtaining effective doses is removing non-therapeutic empty viral capsids lacking DNA cargo. Current methods for separating full (gene-containing) and empty capsids are challenging to scale, produce low product yields, are slow, and are difficult to operationalize for continuous biomanufacturing. This communication demonstrates the feasibility of separating full and empty capsids by ultrafiltration. Separation performance was quantified by measuring the sieving coefficients for full and empty capsids using ELISA, qPCR, and an infectivity assay based on the live cell imaging of green fluorescent protein expression. We demonstrated that polycarbonate track-etched membranes with a pore size of 30 nm selectively permeated empty capsids to full capsids, with a high recovery yield (89%) for full capsids. The average sieving coefficients of full and empty capsids obtained through ELISA/qPCR were calculated as 0.25 and 0.49, indicating that empty capsids were about twice as permeable as full capsids. Establishing ultrafiltration as a viable unit operation for separating full and empty AAV capsids has implications for developing the scale-free continuous purification of AAVs.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434191/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Separating Full and Empty Adeno-Associated Viral Capsids Using Ultrafiltration.\",\"authors\":\"Deepraj Sarmah, Scott M Husson\",\"doi\":\"10.3390/membranes14090194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adeno-associated viral vectors (AAVs) are the predominant viral vectors used for gene therapy applications. A significant challenge in obtaining effective doses is removing non-therapeutic empty viral capsids lacking DNA cargo. Current methods for separating full (gene-containing) and empty capsids are challenging to scale, produce low product yields, are slow, and are difficult to operationalize for continuous biomanufacturing. This communication demonstrates the feasibility of separating full and empty capsids by ultrafiltration. Separation performance was quantified by measuring the sieving coefficients for full and empty capsids using ELISA, qPCR, and an infectivity assay based on the live cell imaging of green fluorescent protein expression. We demonstrated that polycarbonate track-etched membranes with a pore size of 30 nm selectively permeated empty capsids to full capsids, with a high recovery yield (89%) for full capsids. The average sieving coefficients of full and empty capsids obtained through ELISA/qPCR were calculated as 0.25 and 0.49, indicating that empty capsids were about twice as permeable as full capsids. Establishing ultrafiltration as a viable unit operation for separating full and empty AAV capsids has implications for developing the scale-free continuous purification of AAVs.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434191/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14090194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14090194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Novel Method for Separating Full and Empty Adeno-Associated Viral Capsids Using Ultrafiltration.
Adeno-associated viral vectors (AAVs) are the predominant viral vectors used for gene therapy applications. A significant challenge in obtaining effective doses is removing non-therapeutic empty viral capsids lacking DNA cargo. Current methods for separating full (gene-containing) and empty capsids are challenging to scale, produce low product yields, are slow, and are difficult to operationalize for continuous biomanufacturing. This communication demonstrates the feasibility of separating full and empty capsids by ultrafiltration. Separation performance was quantified by measuring the sieving coefficients for full and empty capsids using ELISA, qPCR, and an infectivity assay based on the live cell imaging of green fluorescent protein expression. We demonstrated that polycarbonate track-etched membranes with a pore size of 30 nm selectively permeated empty capsids to full capsids, with a high recovery yield (89%) for full capsids. The average sieving coefficients of full and empty capsids obtained through ELISA/qPCR were calculated as 0.25 and 0.49, indicating that empty capsids were about twice as permeable as full capsids. Establishing ultrafiltration as a viable unit operation for separating full and empty AAV capsids has implications for developing the scale-free continuous purification of AAVs.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.