Sarah E Philo, Sílvia Monteiro, Erica R Fuhrmeister, Ricardo Santos, John Scott Meschke
{"title":"2020 年底 SARS-CoV-2 高峰期在两个不同人群中对抗生素耐药基因的废水监测。","authors":"Sarah E Philo, Sílvia Monteiro, Erica R Fuhrmeister, Ricardo Santos, John Scott Meschke","doi":"10.2166/wh.2024.161","DOIUrl":null,"url":null,"abstract":"<p><p>The United States Centers for Disease Control and Prevention reported a rise in resistant infections after the coronavirus disease 2019 (COVID-19) pandemic started. How and if the pandemic contributed to antibiotic resistance in the larger population is not well understood. Wastewater treatment plants are good locations for environmental surveillance because they can sample entire populations. This study aimed to validate methods used for COVID-19 wastewater surveillance for bacterial targets and to understand how rising COVID-19 cases from October 2020 to February 2021 in Portugal (PT) and King County, Washington contributed to antibiotic resistance genes in wastewater. Primary influent wastewater was collected from two treatment plants in King County and five treatment plants in PT, and hospital effluent was collected from three hospitals in PT. Genomic extracts were tested with the quantitative polymerase chain reaction for antibiotic resistance genes conferring resistance against antibiotics under threat. Random-effect models were fit for log-transformed gene abundances to assess temporal trends. All samples collected tested positive for multiple resistance genes. During the sampling period, <i>mecA</i> statistically significantly increased in King County and PT. No statistical evidence exists of correlation between samples collected in the same Portuguese metro area.</p>","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"22 9","pages":"1683-1694"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wastewater surveillance for antibiotic resistance genes during the late 2020 SARS-CoV-2 peak in two different populations.\",\"authors\":\"Sarah E Philo, Sílvia Monteiro, Erica R Fuhrmeister, Ricardo Santos, John Scott Meschke\",\"doi\":\"10.2166/wh.2024.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The United States Centers for Disease Control and Prevention reported a rise in resistant infections after the coronavirus disease 2019 (COVID-19) pandemic started. How and if the pandemic contributed to antibiotic resistance in the larger population is not well understood. Wastewater treatment plants are good locations for environmental surveillance because they can sample entire populations. This study aimed to validate methods used for COVID-19 wastewater surveillance for bacterial targets and to understand how rising COVID-19 cases from October 2020 to February 2021 in Portugal (PT) and King County, Washington contributed to antibiotic resistance genes in wastewater. Primary influent wastewater was collected from two treatment plants in King County and five treatment plants in PT, and hospital effluent was collected from three hospitals in PT. Genomic extracts were tested with the quantitative polymerase chain reaction for antibiotic resistance genes conferring resistance against antibiotics under threat. Random-effect models were fit for log-transformed gene abundances to assess temporal trends. All samples collected tested positive for multiple resistance genes. During the sampling period, <i>mecA</i> statistically significantly increased in King County and PT. No statistical evidence exists of correlation between samples collected in the same Portuguese metro area.</p>\",\"PeriodicalId\":17436,\"journal\":{\"name\":\"Journal of water and health\",\"volume\":\"22 9\",\"pages\":\"1683-1694\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water and health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wh.2024.161\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2024.161","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Wastewater surveillance for antibiotic resistance genes during the late 2020 SARS-CoV-2 peak in two different populations.
The United States Centers for Disease Control and Prevention reported a rise in resistant infections after the coronavirus disease 2019 (COVID-19) pandemic started. How and if the pandemic contributed to antibiotic resistance in the larger population is not well understood. Wastewater treatment plants are good locations for environmental surveillance because they can sample entire populations. This study aimed to validate methods used for COVID-19 wastewater surveillance for bacterial targets and to understand how rising COVID-19 cases from October 2020 to February 2021 in Portugal (PT) and King County, Washington contributed to antibiotic resistance genes in wastewater. Primary influent wastewater was collected from two treatment plants in King County and five treatment plants in PT, and hospital effluent was collected from three hospitals in PT. Genomic extracts were tested with the quantitative polymerase chain reaction for antibiotic resistance genes conferring resistance against antibiotics under threat. Random-effect models were fit for log-transformed gene abundances to assess temporal trends. All samples collected tested positive for multiple resistance genes. During the sampling period, mecA statistically significantly increased in King County and PT. No statistical evidence exists of correlation between samples collected in the same Portuguese metro area.
期刊介绍:
Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.