{"title":"C6N7 单层中的热传输:基于机器学习的分子动力学研究。","authors":"Jing Wan, Guanting Li, Zeyu Guo, Huasong Qin","doi":"10.1088/1361-648X/ad81a6","DOIUrl":null,"url":null,"abstract":"<p><p>The successful synthesis of a novel C<sub>6</sub>N<sub>7</sub>carbon nitride monolayer offers expansive prospects for applications in the fields of semiconductors, sensors, and gas separation technologies, in which the thermal transport properties of C<sub>6</sub>N<sub>7</sub>are crucial for optimizing the functionality and reliability of these applications. In this work, based on our developed machine learning potential (MLP), molecular dynamics (MD) simulations including homogeneous non-equilibrium, non-equilibrium, and their respective spectral decomposition methods are performed to investigate the effects of phonon transport, temperature, and length on the thermal conductivity of C<sub>6</sub>N<sub>7</sub>monolayer. Our results reveal that low-frequency and in-plane phonon modes dominate the thermal conductivity. Notably, thermal conductivity decreases with an increase in temperature due to temperature-induced increase in phonon-phonon scattering of in-plane phonon modes, while it increases with an extension in sample length. Our findings based on MD simulations with MLP contribute new insights into the lattice thermal conductivity of holey carbon nitride compounds, which is helpful for the development of next-generation electronic and photonic devices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal transport in C<sub>6</sub>N<sub>7</sub>monolayer: a machine learning based molecular dynamics study.\",\"authors\":\"Jing Wan, Guanting Li, Zeyu Guo, Huasong Qin\",\"doi\":\"10.1088/1361-648X/ad81a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The successful synthesis of a novel C<sub>6</sub>N<sub>7</sub>carbon nitride monolayer offers expansive prospects for applications in the fields of semiconductors, sensors, and gas separation technologies, in which the thermal transport properties of C<sub>6</sub>N<sub>7</sub>are crucial for optimizing the functionality and reliability of these applications. In this work, based on our developed machine learning potential (MLP), molecular dynamics (MD) simulations including homogeneous non-equilibrium, non-equilibrium, and their respective spectral decomposition methods are performed to investigate the effects of phonon transport, temperature, and length on the thermal conductivity of C<sub>6</sub>N<sub>7</sub>monolayer. Our results reveal that low-frequency and in-plane phonon modes dominate the thermal conductivity. Notably, thermal conductivity decreases with an increase in temperature due to temperature-induced increase in phonon-phonon scattering of in-plane phonon modes, while it increases with an extension in sample length. Our findings based on MD simulations with MLP contribute new insights into the lattice thermal conductivity of holey carbon nitride compounds, which is helpful for the development of next-generation electronic and photonic devices.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad81a6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad81a6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Thermal transport in C6N7monolayer: a machine learning based molecular dynamics study.
The successful synthesis of a novel C6N7carbon nitride monolayer offers expansive prospects for applications in the fields of semiconductors, sensors, and gas separation technologies, in which the thermal transport properties of C6N7are crucial for optimizing the functionality and reliability of these applications. In this work, based on our developed machine learning potential (MLP), molecular dynamics (MD) simulations including homogeneous non-equilibrium, non-equilibrium, and their respective spectral decomposition methods are performed to investigate the effects of phonon transport, temperature, and length on the thermal conductivity of C6N7monolayer. Our results reveal that low-frequency and in-plane phonon modes dominate the thermal conductivity. Notably, thermal conductivity decreases with an increase in temperature due to temperature-induced increase in phonon-phonon scattering of in-plane phonon modes, while it increases with an extension in sample length. Our findings based on MD simulations with MLP contribute new insights into the lattice thermal conductivity of holey carbon nitride compounds, which is helpful for the development of next-generation electronic and photonic devices.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.