Xuzhi Mo, Feng Ji, Jianguang Chen, Chengcheng Yi, Fang Wang
{"title":"通过单细胞RNA-seq分析和机器学习算法研究有丝分裂相关基因对食管鳞状细胞癌诊断和发展的影响","authors":"Xuzhi Mo, Feng Ji, Jianguang Chen, Chengcheng Yi, Fang Wang","doi":"10.4014/jmb.2407.07052","DOIUrl":null,"url":null,"abstract":"<p><p>As a treatment for esophageal squamous cell carcinoma (ESCC), which is common and fatal, mitophagy is a conserved cellular mechanism that selectively removes damaged mitochondria and is crucial for cellular homeostasis. While tumor development and resistance to anticancer therapies are related to ESCC, their role in ESCC remains unclear. Here, we investigated the relationship between mitophagy-related genes (MRGs) and ESCC to provide novel insights into the role of mitophagy in ESCC prognosis and diagnosis prediction. First, we identified MRGs from the GeneCards database and examined them at both the single-cell and transcriptome levels. Key genes were selected and a prognostic model was constructed using least absolute shrinkage and selection operator analysis. External validation was performed using the GSE53624 dataset and Kaplan-Meier survival analysis was performed to identify <i>PYCARD</i> as a gene significantly associated with survival in ESCC. We then examined the effect of PYCARD on ESCC cell proliferation and migration and identified 169 MRGs at the single-cell and transcriptome levels, as well as the high-risk groups associated with cancer-related pathways. Thirteen key genes were selected for model construction via multiple machine learning algorithms. PYCARD, which is upregulated in patients with ESCC, was negatively correlated with prognosis and its knockdown inhibited ESCC cell proliferation and migration. Our ESCC prediction model based on mitophagy-related genes demonstrated promising results and provides more options for the management and clinical treatment of ESCC patients. Moreover, targeting or regulating PYCARD levels might offer new therapeutic strategies for ESCC patients in clinical settings.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 11","pages":"2362-2375"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms.\",\"authors\":\"Xuzhi Mo, Feng Ji, Jianguang Chen, Chengcheng Yi, Fang Wang\",\"doi\":\"10.4014/jmb.2407.07052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a treatment for esophageal squamous cell carcinoma (ESCC), which is common and fatal, mitophagy is a conserved cellular mechanism that selectively removes damaged mitochondria and is crucial for cellular homeostasis. While tumor development and resistance to anticancer therapies are related to ESCC, their role in ESCC remains unclear. Here, we investigated the relationship between mitophagy-related genes (MRGs) and ESCC to provide novel insights into the role of mitophagy in ESCC prognosis and diagnosis prediction. First, we identified MRGs from the GeneCards database and examined them at both the single-cell and transcriptome levels. Key genes were selected and a prognostic model was constructed using least absolute shrinkage and selection operator analysis. External validation was performed using the GSE53624 dataset and Kaplan-Meier survival analysis was performed to identify <i>PYCARD</i> as a gene significantly associated with survival in ESCC. We then examined the effect of PYCARD on ESCC cell proliferation and migration and identified 169 MRGs at the single-cell and transcriptome levels, as well as the high-risk groups associated with cancer-related pathways. Thirteen key genes were selected for model construction via multiple machine learning algorithms. PYCARD, which is upregulated in patients with ESCC, was negatively correlated with prognosis and its knockdown inhibited ESCC cell proliferation and migration. Our ESCC prediction model based on mitophagy-related genes demonstrated promising results and provides more options for the management and clinical treatment of ESCC patients. Moreover, targeting or regulating PYCARD levels might offer new therapeutic strategies for ESCC patients in clinical settings.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"34 11\",\"pages\":\"2362-2375\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2407.07052\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2407.07052","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms.
As a treatment for esophageal squamous cell carcinoma (ESCC), which is common and fatal, mitophagy is a conserved cellular mechanism that selectively removes damaged mitochondria and is crucial for cellular homeostasis. While tumor development and resistance to anticancer therapies are related to ESCC, their role in ESCC remains unclear. Here, we investigated the relationship between mitophagy-related genes (MRGs) and ESCC to provide novel insights into the role of mitophagy in ESCC prognosis and diagnosis prediction. First, we identified MRGs from the GeneCards database and examined them at both the single-cell and transcriptome levels. Key genes were selected and a prognostic model was constructed using least absolute shrinkage and selection operator analysis. External validation was performed using the GSE53624 dataset and Kaplan-Meier survival analysis was performed to identify PYCARD as a gene significantly associated with survival in ESCC. We then examined the effect of PYCARD on ESCC cell proliferation and migration and identified 169 MRGs at the single-cell and transcriptome levels, as well as the high-risk groups associated with cancer-related pathways. Thirteen key genes were selected for model construction via multiple machine learning algorithms. PYCARD, which is upregulated in patients with ESCC, was negatively correlated with prognosis and its knockdown inhibited ESCC cell proliferation and migration. Our ESCC prediction model based on mitophagy-related genes demonstrated promising results and provides more options for the management and clinical treatment of ESCC patients. Moreover, targeting or regulating PYCARD levels might offer new therapeutic strategies for ESCC patients in clinical settings.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.