Deepmala Shrestha, Bishnu D Pant, Sanjoy Roychowdhury, Anugraha Gandhirajan, Emily Cross, Mamta Chhabria, Seth R Bauer, Margaret Jeng, Megan Mitchell, Omar Mehkri, Fatima Zaidi, Akash Ahuja, Xiaofeng Wang, Yuxin Wang, Christine McDonald, Michelle S Longworth, Thaddeus S Stappenbeck, George R Stark, Rachel G Scheraga, Vidula Vachharajani
{"title":"脓毒性休克中的免疫代谢混乱","authors":"Deepmala Shrestha, Bishnu D Pant, Sanjoy Roychowdhury, Anugraha Gandhirajan, Emily Cross, Mamta Chhabria, Seth R Bauer, Margaret Jeng, Megan Mitchell, Omar Mehkri, Fatima Zaidi, Akash Ahuja, Xiaofeng Wang, Yuxin Wang, Christine McDonald, Michelle S Longworth, Thaddeus S Stappenbeck, George R Stark, Rachel G Scheraga, Vidula Vachharajani","doi":"10.1093/jleuko/qiae211","DOIUrl":null,"url":null,"abstract":"<p><p>Septic shock is associated with over 40% mortality. The immune response in septic shock is tightly regulated by cellular metabolism and transitions from early hyper-inflammation to later hypo-inflammation. Patients are susceptible to secondary infections during hypo-inflammation. The magnitude of the metabolic dysregulation and the effect of plasma metabolites on the circulating immune cells in septic shock are not reported. We hypothesized that the accumulated plasma metabolites affect the immune response in septic shock during hypo-inflammation. Our study took a unique approach. Using peripheral blood from adult septic shock patients and healthy controls, we studied: (i) Whole blood stimulation ± E. Coli lipopolysaccharide (LPS: endotoxin) to analyze plasma TNF protein, and (ii). Plasma metabolomic profile by Metabolon. Inc. (iii) We exposed peripheral blood mononuclear cells (PBMCs) from healthy controls to commercially available carbohydrate, amino acid, and fatty acid metabolites and studied the response to LPS. We report that: (i) The whole blood stimulation of the healthy control group showed a significantly upregulated TNF protein, while the septic shock group remained endotoxin tolerant, a biomarker for hypo-inflammation. (ii) A significant accumulation of carbohydrate, amino acid, fatty acid, ceramide, sphingomyelin, and TCA cycle pathway metabolites in septic shock plasma. (iii) In vitro exposure to 5 metabolites repressed while 2 metabolites upregulated the inflammatory response of PBMCs to LPS. We conclude that the endotoxin-tolerant phenotype of septic shock is associated with a simultaneous accumulation of plasma metabolites from multiple metabolic pathways, and these metabolites fundamentally influence the immune response profile of circulating cells.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879763/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immunometabolic chaos in septic shock.\",\"authors\":\"Deepmala Shrestha, Bishnu D Pant, Sanjoy Roychowdhury, Anugraha Gandhirajan, Emily Cross, Mamta Chhabria, Seth R Bauer, Margaret Jeng, Megan Mitchell, Omar Mehkri, Fatima Zaidi, Akash Ahuja, Xiaofeng Wang, Yuxin Wang, Christine McDonald, Michelle S Longworth, Thaddeus S Stappenbeck, George R Stark, Rachel G Scheraga, Vidula Vachharajani\",\"doi\":\"10.1093/jleuko/qiae211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Septic shock is associated with over 40% mortality. The immune response in septic shock is tightly regulated by cellular metabolism and transitions from early hyper-inflammation to later hypo-inflammation. Patients are susceptible to secondary infections during hypo-inflammation. The magnitude of the metabolic dysregulation and the effect of plasma metabolites on the circulating immune cells in septic shock are not reported. We hypothesized that the accumulated plasma metabolites affect the immune response in septic shock during hypo-inflammation. Our study took a unique approach. Using peripheral blood from adult septic shock patients and healthy controls, we studied: (i) Whole blood stimulation ± E. Coli lipopolysaccharide (LPS: endotoxin) to analyze plasma TNF protein, and (ii). Plasma metabolomic profile by Metabolon. Inc. (iii) We exposed peripheral blood mononuclear cells (PBMCs) from healthy controls to commercially available carbohydrate, amino acid, and fatty acid metabolites and studied the response to LPS. We report that: (i) The whole blood stimulation of the healthy control group showed a significantly upregulated TNF protein, while the septic shock group remained endotoxin tolerant, a biomarker for hypo-inflammation. (ii) A significant accumulation of carbohydrate, amino acid, fatty acid, ceramide, sphingomyelin, and TCA cycle pathway metabolites in septic shock plasma. (iii) In vitro exposure to 5 metabolites repressed while 2 metabolites upregulated the inflammatory response of PBMCs to LPS. We conclude that the endotoxin-tolerant phenotype of septic shock is associated with a simultaneous accumulation of plasma metabolites from multiple metabolic pathways, and these metabolites fundamentally influence the immune response profile of circulating cells.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiae211\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Septic shock is associated with over 40% mortality. The immune response in septic shock is tightly regulated by cellular metabolism and transitions from early hyper-inflammation to later hypo-inflammation. Patients are susceptible to secondary infections during hypo-inflammation. The magnitude of the metabolic dysregulation and the effect of plasma metabolites on the circulating immune cells in septic shock are not reported. We hypothesized that the accumulated plasma metabolites affect the immune response in septic shock during hypo-inflammation. Our study took a unique approach. Using peripheral blood from adult septic shock patients and healthy controls, we studied: (i) Whole blood stimulation ± E. Coli lipopolysaccharide (LPS: endotoxin) to analyze plasma TNF protein, and (ii). Plasma metabolomic profile by Metabolon. Inc. (iii) We exposed peripheral blood mononuclear cells (PBMCs) from healthy controls to commercially available carbohydrate, amino acid, and fatty acid metabolites and studied the response to LPS. We report that: (i) The whole blood stimulation of the healthy control group showed a significantly upregulated TNF protein, while the septic shock group remained endotoxin tolerant, a biomarker for hypo-inflammation. (ii) A significant accumulation of carbohydrate, amino acid, fatty acid, ceramide, sphingomyelin, and TCA cycle pathway metabolites in septic shock plasma. (iii) In vitro exposure to 5 metabolites repressed while 2 metabolites upregulated the inflammatory response of PBMCs to LPS. We conclude that the endotoxin-tolerant phenotype of septic shock is associated with a simultaneous accumulation of plasma metabolites from multiple metabolic pathways, and these metabolites fundamentally influence the immune response profile of circulating cells.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.