{"title":"冠心病患者大脑结构和功能的神经影像学发现","authors":"Wanbing Wang, Xinghua Zhang, Jinhao Lyu, Qi Duan, Fei Yan, Runze Li, Xinbo Xing, Yanhua Li, Xin Lou","doi":"10.1002/jmri.29624","DOIUrl":null,"url":null,"abstract":"<p><p>An increasing number of evidence suggests that bidirectional communication between the cardiovascular system and the central nervous system (CNS), known as the heart-brain interaction, is crucial in understanding the impact of coronary artery disease (CAD) on brain health. The multifactorial role of CAD in the brain involves processes such as inflammation, oxidative stress, neuronal activity, neuroendocrine imbalances, and reduced cerebral perfusion, leading to various cerebral abnormalities. The mechanisms underlying the relationship between CAD and brain injury are complex and involve parallel pathways in the CNS, endocrine system, and immune system. Although the exact mechanisms remain partially understood, neuroimaging techniques offer valuable insights into subtle cerebral abnormalities in CAD patients. Neuroimaging techniques, including assessment of neural function, brain metabolism, white matter microstructure, and brain volume, provide information on the evolving nature of CAD-related cerebral abnormalities over time. This review provides an overview of the pathophysiological mechanisms of CAD in the heart-brain interaction and summarizes recent neuroimaging studies utilizing multiparametric techniques to investigate brain abnormalities associated with CAD. The application of advanced neuroimaging, particularly functional, diffusion, and perfusion advanced techniques, offers high resolution, multiparametric capabilities, and high contrast, thereby allowing for the early detection of changes in brain structure and function, facilitating further exploration of the intricate relationship between CAD and brain health. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroimaging Findings From Cerebral Structure and Function in Coronary Artery Disease.\",\"authors\":\"Wanbing Wang, Xinghua Zhang, Jinhao Lyu, Qi Duan, Fei Yan, Runze Li, Xinbo Xing, Yanhua Li, Xin Lou\",\"doi\":\"10.1002/jmri.29624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An increasing number of evidence suggests that bidirectional communication between the cardiovascular system and the central nervous system (CNS), known as the heart-brain interaction, is crucial in understanding the impact of coronary artery disease (CAD) on brain health. The multifactorial role of CAD in the brain involves processes such as inflammation, oxidative stress, neuronal activity, neuroendocrine imbalances, and reduced cerebral perfusion, leading to various cerebral abnormalities. The mechanisms underlying the relationship between CAD and brain injury are complex and involve parallel pathways in the CNS, endocrine system, and immune system. Although the exact mechanisms remain partially understood, neuroimaging techniques offer valuable insights into subtle cerebral abnormalities in CAD patients. Neuroimaging techniques, including assessment of neural function, brain metabolism, white matter microstructure, and brain volume, provide information on the evolving nature of CAD-related cerebral abnormalities over time. This review provides an overview of the pathophysiological mechanisms of CAD in the heart-brain interaction and summarizes recent neuroimaging studies utilizing multiparametric techniques to investigate brain abnormalities associated with CAD. The application of advanced neuroimaging, particularly functional, diffusion, and perfusion advanced techniques, offers high resolution, multiparametric capabilities, and high contrast, thereby allowing for the early detection of changes in brain structure and function, facilitating further exploration of the intricate relationship between CAD and brain health. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jmri.29624\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29624","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Neuroimaging Findings From Cerebral Structure and Function in Coronary Artery Disease.
An increasing number of evidence suggests that bidirectional communication between the cardiovascular system and the central nervous system (CNS), known as the heart-brain interaction, is crucial in understanding the impact of coronary artery disease (CAD) on brain health. The multifactorial role of CAD in the brain involves processes such as inflammation, oxidative stress, neuronal activity, neuroendocrine imbalances, and reduced cerebral perfusion, leading to various cerebral abnormalities. The mechanisms underlying the relationship between CAD and brain injury are complex and involve parallel pathways in the CNS, endocrine system, and immune system. Although the exact mechanisms remain partially understood, neuroimaging techniques offer valuable insights into subtle cerebral abnormalities in CAD patients. Neuroimaging techniques, including assessment of neural function, brain metabolism, white matter microstructure, and brain volume, provide information on the evolving nature of CAD-related cerebral abnormalities over time. This review provides an overview of the pathophysiological mechanisms of CAD in the heart-brain interaction and summarizes recent neuroimaging studies utilizing multiparametric techniques to investigate brain abnormalities associated with CAD. The application of advanced neuroimaging, particularly functional, diffusion, and perfusion advanced techniques, offers high resolution, multiparametric capabilities, and high contrast, thereby allowing for the early detection of changes in brain structure and function, facilitating further exploration of the intricate relationship between CAD and brain health. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.