用 FRET 探针观察线粒体膜电位:整合荧光强度比和寿命成像。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Fei Peng, Xiangnan Ai, Xiaoyu Bu, Zixuan Zhao, Baoxiang Gao
{"title":"用 FRET 探针观察线粒体膜电位:整合荧光强度比和寿命成像。","authors":"Fei Peng, Xiangnan Ai, Xiaoyu Bu, Zixuan Zhao, Baoxiang Gao","doi":"10.1007/s10895-024-03929-w","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial membrane potential (MMP) is crucial for mitochondrial function and serves as a key indicator of cellular health and metabolic activity. Traditional lipophilic cationic fluorescence intensity probes are unavoidably influenced by probe concentration, laser intensity, and photobleaching, limiting their accuracy. To address these issues, we designed and synthesized a pair of fluorescence molecules, OR-C8 and SiR-BA, based on the Förster Resonance Energy Transfer (FRET) mechanism, for dual-modality visualization of MMP. OR-C8 anchors to the inner mitochondrial membrane through strong hydrophobic interactions, while SiR-BA is expelled from mitochondria when MMP decreases, thereby regulating the FRET process. During MMP reduction, the fluorescence intensity and lifetime of OR-C8 increase, while the fluorescence intensity of SiR-BA decreases. By combining changes in fluorescence intensity ratio and fluorescence lifetime, dual-modality visualization of MMP was achieved. This method not only accurately reflects MMP changes but also provides a novel tool for in-depth studies of mitochondrial function and related disease mechanisms, offering significant potential for advancing mitochondrial research and therapeutic development.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing Mitochondrial Membrane Potential with FRET Probes: Integrating Fluorescence Intensity Ratio and Lifetime Imaging.\",\"authors\":\"Fei Peng, Xiangnan Ai, Xiaoyu Bu, Zixuan Zhao, Baoxiang Gao\",\"doi\":\"10.1007/s10895-024-03929-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial membrane potential (MMP) is crucial for mitochondrial function and serves as a key indicator of cellular health and metabolic activity. Traditional lipophilic cationic fluorescence intensity probes are unavoidably influenced by probe concentration, laser intensity, and photobleaching, limiting their accuracy. To address these issues, we designed and synthesized a pair of fluorescence molecules, OR-C8 and SiR-BA, based on the Förster Resonance Energy Transfer (FRET) mechanism, for dual-modality visualization of MMP. OR-C8 anchors to the inner mitochondrial membrane through strong hydrophobic interactions, while SiR-BA is expelled from mitochondria when MMP decreases, thereby regulating the FRET process. During MMP reduction, the fluorescence intensity and lifetime of OR-C8 increase, while the fluorescence intensity of SiR-BA decreases. By combining changes in fluorescence intensity ratio and fluorescence lifetime, dual-modality visualization of MMP was achieved. This method not only accurately reflects MMP changes but also provides a novel tool for in-depth studies of mitochondrial function and related disease mechanisms, offering significant potential for advancing mitochondrial research and therapeutic development.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03929-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03929-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

线粒体膜电位(MMP)对线粒体功能至关重要,是细胞健康和代谢活动的关键指标。传统的亲脂性阳离子荧光强度探针不可避免地会受到探针浓度、激光强度和光漂白的影响,从而限制了其准确性。为了解决这些问题,我们设计并合成了一对基于佛斯特共振能量转移(FRET)机制的荧光分子--OR-C8 和 SiR-BA,用于 MMP 的双模式可视化。OR-C8 通过强烈的疏水相互作用锚定在线粒体内膜上,而 SiR-BA 则在 MMP 降低时从线粒体中排出,从而调节 FRET 过程。在 MMP 降低过程中,OR-C8 的荧光强度和寿命增加,而 SiR-BA 的荧光强度降低。通过结合荧光强度比和荧光寿命的变化,实现了 MMP 的双模式可视化。这种方法不仅能准确反映 MMP 的变化,还为深入研究线粒体功能和相关疾病机制提供了一种新工具,为推动线粒体研究和治疗开发提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Mitochondrial Membrane Potential with FRET Probes: Integrating Fluorescence Intensity Ratio and Lifetime Imaging.

Mitochondrial membrane potential (MMP) is crucial for mitochondrial function and serves as a key indicator of cellular health and metabolic activity. Traditional lipophilic cationic fluorescence intensity probes are unavoidably influenced by probe concentration, laser intensity, and photobleaching, limiting their accuracy. To address these issues, we designed and synthesized a pair of fluorescence molecules, OR-C8 and SiR-BA, based on the Förster Resonance Energy Transfer (FRET) mechanism, for dual-modality visualization of MMP. OR-C8 anchors to the inner mitochondrial membrane through strong hydrophobic interactions, while SiR-BA is expelled from mitochondria when MMP decreases, thereby regulating the FRET process. During MMP reduction, the fluorescence intensity and lifetime of OR-C8 increase, while the fluorescence intensity of SiR-BA decreases. By combining changes in fluorescence intensity ratio and fluorescence lifetime, dual-modality visualization of MMP was achieved. This method not only accurately reflects MMP changes but also provides a novel tool for in-depth studies of mitochondrial function and related disease mechanisms, offering significant potential for advancing mitochondrial research and therapeutic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信