{"title":"基于供体-受体的新型 4-硝基苯酚发光体作为光电应用领域的黄橙色荧光材料。","authors":"K G Mane, S R Pujari, V B Shahabade, P B Nagore","doi":"10.1007/s10895-024-03938-9","DOIUrl":null,"url":null,"abstract":"<p><p>A new category of 4-nitrophenol (4-NP) luminophores, infused with varying amounts of Pyrene (Py), was synthesized using the standard solid-state reaction method to investigate novel luminophores that emit at longer wavelengths. Their optical and electrochemical properties were analyzed using fluorimetry and cyclic voltammetry techniques. The fluorescence spectrum of Py-doped 4-NP displayed a broad fluorescence band with a peak at 599 nm for a Py concentration of 1 × 10<sup>- 3</sup> mol, indicating exciplex formation between 4-NP and Py in the excited state. The electrochemical data revealed that the energy levels of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) for the synthesized luminophores ranged from - 5.72 to -5.73 eV and - 3.01 to -3.08 eV, respectively. Thermal stability was evaluated through TGA analysis. The XRD confirmed the synthesis of a homogeneous material. The SEM images showed crystal sizes of approximately 115 nm. This thorough investigation indicates the potential of these newly synthesized yellow-orange fluorescent luminophores for optoelectronic applications.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Donor-Acceptor Based 4-Nitrophenol Luminophores as a Yellow-Orange Fluorescent Material for Optoelectronic Applications.\",\"authors\":\"K G Mane, S R Pujari, V B Shahabade, P B Nagore\",\"doi\":\"10.1007/s10895-024-03938-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new category of 4-nitrophenol (4-NP) luminophores, infused with varying amounts of Pyrene (Py), was synthesized using the standard solid-state reaction method to investigate novel luminophores that emit at longer wavelengths. Their optical and electrochemical properties were analyzed using fluorimetry and cyclic voltammetry techniques. The fluorescence spectrum of Py-doped 4-NP displayed a broad fluorescence band with a peak at 599 nm for a Py concentration of 1 × 10<sup>- 3</sup> mol, indicating exciplex formation between 4-NP and Py in the excited state. The electrochemical data revealed that the energy levels of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) for the synthesized luminophores ranged from - 5.72 to -5.73 eV and - 3.01 to -3.08 eV, respectively. Thermal stability was evaluated through TGA analysis. The XRD confirmed the synthesis of a homogeneous material. The SEM images showed crystal sizes of approximately 115 nm. This thorough investigation indicates the potential of these newly synthesized yellow-orange fluorescent luminophores for optoelectronic applications.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03938-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03938-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Novel Donor-Acceptor Based 4-Nitrophenol Luminophores as a Yellow-Orange Fluorescent Material for Optoelectronic Applications.
A new category of 4-nitrophenol (4-NP) luminophores, infused with varying amounts of Pyrene (Py), was synthesized using the standard solid-state reaction method to investigate novel luminophores that emit at longer wavelengths. Their optical and electrochemical properties were analyzed using fluorimetry and cyclic voltammetry techniques. The fluorescence spectrum of Py-doped 4-NP displayed a broad fluorescence band with a peak at 599 nm for a Py concentration of 1 × 10- 3 mol, indicating exciplex formation between 4-NP and Py in the excited state. The electrochemical data revealed that the energy levels of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) for the synthesized luminophores ranged from - 5.72 to -5.73 eV and - 3.01 to -3.08 eV, respectively. Thermal stability was evaluated through TGA analysis. The XRD confirmed the synthesis of a homogeneous material. The SEM images showed crystal sizes of approximately 115 nm. This thorough investigation indicates the potential of these newly synthesized yellow-orange fluorescent luminophores for optoelectronic applications.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.