主动脉修复手术中主动脉移植材料的生物力学和微结构特性比较

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Haoliang Sun, Zirui Cheng, Xiaoya Guo, Hongcheng Gu, Dalin Tang, Liang Wang
{"title":"主动脉修复手术中主动脉移植材料的生物力学和微结构特性比较","authors":"Haoliang Sun, Zirui Cheng, Xiaoya Guo, Hongcheng Gu, Dalin Tang, Liang Wang","doi":"10.3390/jfb15090248","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of materials including normal aorta (n = 10), dissected aorta (n = 6), human pericardium (n = 8), bovine pericardium (n = 8) and Dacron graft (n = 5) were collected to perform uniaxial tensile testing to determine their material stiffness, and ultimate strength/stretch. The elastin and collagen contents in four tissue groups except for Dacron were quantified by histological examinations, while the material ultrastructure of five material groups was visualized by scanning electron microscope. Statistical results showed that three graft materials including Dacron, human pericardium and bovine pericardium had significantly higher ultimate strength and stiffness than both normal and dissected aortas. Human and bovine pericardia had significantly lower ultimate stretch than native aortas. Histological examinations revealed that normal and diseased aortic tissues had a significantly higher content of elastic fiber than two pericardial tissues, but less collagen fiber content. All four tissue groups exhibited lamellar fiber ultrastructure, with aortic tissues possessing thinner lamella. Dacron was composed of densely coalesced polyethylene terephthalate fibers in thick bundles. Aortic graft materials with denser fiber ultrastructure and/or higher content of collagen fiber than native aortic tissues, exhibited higher ultimate strength and stiffness. This information provides a basis to understand the mechanical failure of aortic grafts, and inspire the design of biomimetic aortic grafts.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433388/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries.\",\"authors\":\"Haoliang Sun, Zirui Cheng, Xiaoya Guo, Hongcheng Gu, Dalin Tang, Liang Wang\",\"doi\":\"10.3390/jfb15090248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of materials including normal aorta (n = 10), dissected aorta (n = 6), human pericardium (n = 8), bovine pericardium (n = 8) and Dacron graft (n = 5) were collected to perform uniaxial tensile testing to determine their material stiffness, and ultimate strength/stretch. The elastin and collagen contents in four tissue groups except for Dacron were quantified by histological examinations, while the material ultrastructure of five material groups was visualized by scanning electron microscope. Statistical results showed that three graft materials including Dacron, human pericardium and bovine pericardium had significantly higher ultimate strength and stiffness than both normal and dissected aortas. Human and bovine pericardia had significantly lower ultimate stretch than native aortas. Histological examinations revealed that normal and diseased aortic tissues had a significantly higher content of elastic fiber than two pericardial tissues, but less collagen fiber content. All four tissue groups exhibited lamellar fiber ultrastructure, with aortic tissues possessing thinner lamella. Dacron was composed of densely coalesced polyethylene terephthalate fibers in thick bundles. Aortic graft materials with denser fiber ultrastructure and/or higher content of collagen fiber than native aortic tissues, exhibited higher ultimate strength and stiffness. This information provides a basis to understand the mechanical failure of aortic grafts, and inspire the design of biomimetic aortic grafts.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15090248\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15090248","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

原生主动脉和主动脉移植物之间的机械不匹配会导致移植物失效。本研究旨在比较主动脉修复手术中使用的不同移植物材料与正常和剥离的人体升主动脉的机械和微观结构特性。研究收集了五种材料,包括正常主动脉(n = 10)、解剖主动脉(n = 6)、人心包(n = 8)、牛心包(n = 8)和达克隆移植物(n = 5),进行单轴拉伸测试,以确定其材料刚度和极限强度/拉伸。除 Dacron 外,其他四组组织的弹性蛋白和胶原蛋白含量均通过组织学检查进行量化,而五组材料的材料超微结构则通过扫描电子显微镜进行观察。统计结果表明,达克隆、人心包和牛心包等三种移植物材料的极限强度和刚度明显高于正常和剥离的主动脉。人心包和牛心包的极限拉伸度明显低于原生主动脉。组织学检查显示,正常和病变主动脉组织的弹性纤维含量明显高于两种心包组织,但胶原纤维含量较少。所有四组组织都表现出层状纤维超微结构,主动脉组织的层状纤维较薄。Dacron 由密集凝聚的聚对苯二甲酸乙二醇酯纤维组成,纤维束较粗。与原生主动脉组织相比,纤维超微结构更致密和/或胶原纤维含量更高的主动脉移植材料具有更高的极限强度和刚度。这些信息为了解主动脉移植物的机械故障提供了基础,并为设计仿生物主动脉移植物提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries.

Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of materials including normal aorta (n = 10), dissected aorta (n = 6), human pericardium (n = 8), bovine pericardium (n = 8) and Dacron graft (n = 5) were collected to perform uniaxial tensile testing to determine their material stiffness, and ultimate strength/stretch. The elastin and collagen contents in four tissue groups except for Dacron were quantified by histological examinations, while the material ultrastructure of five material groups was visualized by scanning electron microscope. Statistical results showed that three graft materials including Dacron, human pericardium and bovine pericardium had significantly higher ultimate strength and stiffness than both normal and dissected aortas. Human and bovine pericardia had significantly lower ultimate stretch than native aortas. Histological examinations revealed that normal and diseased aortic tissues had a significantly higher content of elastic fiber than two pericardial tissues, but less collagen fiber content. All four tissue groups exhibited lamellar fiber ultrastructure, with aortic tissues possessing thinner lamella. Dacron was composed of densely coalesced polyethylene terephthalate fibers in thick bundles. Aortic graft materials with denser fiber ultrastructure and/or higher content of collagen fiber than native aortic tissues, exhibited higher ultimate strength and stiffness. This information provides a basis to understand the mechanical failure of aortic grafts, and inspire the design of biomimetic aortic grafts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信