电子撞击电离诱导 C6H63+ 的三体去质子化碎片动力学。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Xiaorui Xue, Jiaqi Zhou, Xintai Hao, Shaokui Jia, Qingrui Zeng, Xueguang Ren
{"title":"电子撞击电离诱导 C6H63+ 的三体去质子化碎片动力学。","authors":"Xiaorui Xue, Jiaqi Zhou, Xintai Hao, Shaokui Jia, Qingrui Zeng, Xueguang Ren","doi":"10.1063/5.0232319","DOIUrl":null,"url":null,"abstract":"<p><p>The three-body fragmentation dynamics of benzene trications C6H63+ induced by 200 eV electron-impact produced by a photoemission cathode is investigated. All three fragment ions are detected in coincidence, and their momentum vectors are determined by employing a COLTRIMS reaction microscope. The detailed kinematical information of three deprotonation fragmentation channels of H+ + C3H2+ + C3H3+, H+ + C2H3+ + C4H2+, and H+ + C2H2+ + C4H3+ are obtained. By analyzing the momentum and energy correlation spectra among all the three fragment ions, we find that all the three channels are primarily generated by sequential fragmentation processes. Each channel has two deprotonation pathways, corresponding to proton emission in the first or second step of sequential fragmentation, respectively. These results provide insight into the mechanisms and dynamics of deprotonation and ring-breaking reactions in the three-body fragmentation processes of aromatic ring molecules.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-body deprotonation fragmentation dynamics of C6H63+ induced by electron-impact ionization.\",\"authors\":\"Xiaorui Xue, Jiaqi Zhou, Xintai Hao, Shaokui Jia, Qingrui Zeng, Xueguang Ren\",\"doi\":\"10.1063/5.0232319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The three-body fragmentation dynamics of benzene trications C6H63+ induced by 200 eV electron-impact produced by a photoemission cathode is investigated. All three fragment ions are detected in coincidence, and their momentum vectors are determined by employing a COLTRIMS reaction microscope. The detailed kinematical information of three deprotonation fragmentation channels of H+ + C3H2+ + C3H3+, H+ + C2H3+ + C4H2+, and H+ + C2H2+ + C4H3+ are obtained. By analyzing the momentum and energy correlation spectra among all the three fragment ions, we find that all the three channels are primarily generated by sequential fragmentation processes. Each channel has two deprotonation pathways, corresponding to proton emission in the first or second step of sequential fragmentation, respectively. These results provide insight into the mechanisms and dynamics of deprotonation and ring-breaking reactions in the three-body fragmentation processes of aromatic ring molecules.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0232319\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0232319","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了光发射阴极产生的 200 eV 电子撞击诱导的苯三态 C6H63+ 的三体碎片动力学。利用 COLTRIMS 反应显微镜检测了所有三个碎片离子,并确定了它们的动量矢量。获得了 H+ + C3H2+ + C3H3+、H+ + C2H3+ + C4H2+ 和 H+ + C2H2+ + C4H3+ 三个去质子化碎片通道的详细运动学信息。通过分析所有三个碎片离子的动量和能量相关谱,我们发现所有三个通道都主要是由顺序碎片过程产生的。每个通道都有两个去质子化途径,分别对应于顺序破碎第一步或第二步的质子发射。这些结果使我们对芳香环分子三体破碎过程中的去质子化和破环反应的机制和动力学有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-body deprotonation fragmentation dynamics of C6H63+ induced by electron-impact ionization.

The three-body fragmentation dynamics of benzene trications C6H63+ induced by 200 eV electron-impact produced by a photoemission cathode is investigated. All three fragment ions are detected in coincidence, and their momentum vectors are determined by employing a COLTRIMS reaction microscope. The detailed kinematical information of three deprotonation fragmentation channels of H+ + C3H2+ + C3H3+, H+ + C2H3+ + C4H2+, and H+ + C2H2+ + C4H3+ are obtained. By analyzing the momentum and energy correlation spectra among all the three fragment ions, we find that all the three channels are primarily generated by sequential fragmentation processes. Each channel has two deprotonation pathways, corresponding to proton emission in the first or second step of sequential fragmentation, respectively. These results provide insight into the mechanisms and dynamics of deprotonation and ring-breaking reactions in the three-body fragmentation processes of aromatic ring molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信