间隙团簇家族对合成后缺陷处理和利用浸没表面提纯氧化物的影响。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Heonjae Jeong, Edmund G Seebauer
{"title":"间隙团簇家族对合成后缺陷处理和利用浸没表面提纯氧化物的影响。","authors":"Heonjae Jeong, Edmund G Seebauer","doi":"10.1063/5.0230224","DOIUrl":null,"url":null,"abstract":"<p><p>Injection of interstitial atoms by specially prepared surfaces submerged in liquid water near room temperature offers an attractive approach for post-synthesis defect manipulation and isotopic purification in device structures. However, this approach can be limited by trapping reactions that form small defect clusters. The compositions and dissociation barriers of such clusters remain mostly unknown. This communication seeks to address this gap by measuring the dissociation energies of oxygen interstitial traps in rutile TiO2 and wurtzite ZnO exposed to liquid water. Isotopic self-diffusion measurements using 18O, combined with progressive annealing protocols, suggest the traps are small interstitial clusters with dissociation energies ranging from 1.3 to 1.9 eV. These clusters may comprise a family incorporating various numbers, compositions, and configurations of O and H atoms; however, in TiO2, native interstitial clusters left over from initial synthesis may also play a role. Families of small clusters are probably common in semiconducting oxides and have several consequences for post-synthesis defect manipulation and purification of semiconductors using submerged surfaces.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of interstitial cluster families on post-synthesis defect manipulation and purification of oxides using submerged surfaces.\",\"authors\":\"Heonjae Jeong, Edmund G Seebauer\",\"doi\":\"10.1063/5.0230224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Injection of interstitial atoms by specially prepared surfaces submerged in liquid water near room temperature offers an attractive approach for post-synthesis defect manipulation and isotopic purification in device structures. However, this approach can be limited by trapping reactions that form small defect clusters. The compositions and dissociation barriers of such clusters remain mostly unknown. This communication seeks to address this gap by measuring the dissociation energies of oxygen interstitial traps in rutile TiO2 and wurtzite ZnO exposed to liquid water. Isotopic self-diffusion measurements using 18O, combined with progressive annealing protocols, suggest the traps are small interstitial clusters with dissociation energies ranging from 1.3 to 1.9 eV. These clusters may comprise a family incorporating various numbers, compositions, and configurations of O and H atoms; however, in TiO2, native interstitial clusters left over from initial synthesis may also play a role. Families of small clusters are probably common in semiconducting oxides and have several consequences for post-synthesis defect manipulation and purification of semiconductors using submerged surfaces.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230224\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230224","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过浸没在接近室温的液态水中的特殊制备表面注入间隙原子,为设备结构中的合成后缺陷处理和同位素纯化提供了一种极具吸引力的方法。然而,这种方法可能会受到形成小缺陷簇的捕获反应的限制。这些缺陷簇的组成和解离障壁在很大程度上仍是未知的。这篇论文试图通过测量暴露于液态水的金红石二氧化钛和晶格氧化锌中氧间隙陷阱的解离能来弥补这一缺陷。使用 18O 进行的同位素自扩散测量,结合渐进退火协议,表明这些陷阱是小的间隙簇,解离能在 1.3 至 1.9 eV 之间。这些簇可能由一个包含不同数量、组成和构型的 O 原子和 H 原子的家族组成;不过,在二氧化钛中,最初合成时留下的原生间隙簇也可能起作用。小团簇家族可能是半导体氧化物中的常见现象,对合成后的缺陷处理和利用浸没表面纯化半导体有多种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of interstitial cluster families on post-synthesis defect manipulation and purification of oxides using submerged surfaces.

Injection of interstitial atoms by specially prepared surfaces submerged in liquid water near room temperature offers an attractive approach for post-synthesis defect manipulation and isotopic purification in device structures. However, this approach can be limited by trapping reactions that form small defect clusters. The compositions and dissociation barriers of such clusters remain mostly unknown. This communication seeks to address this gap by measuring the dissociation energies of oxygen interstitial traps in rutile TiO2 and wurtzite ZnO exposed to liquid water. Isotopic self-diffusion measurements using 18O, combined with progressive annealing protocols, suggest the traps are small interstitial clusters with dissociation energies ranging from 1.3 to 1.9 eV. These clusters may comprise a family incorporating various numbers, compositions, and configurations of O and H atoms; however, in TiO2, native interstitial clusters left over from initial synthesis may also play a role. Families of small clusters are probably common in semiconducting oxides and have several consequences for post-synthesis defect manipulation and purification of semiconductors using submerged surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信