哈金斯波段中 O3 光解离的成像研究。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Nicholas J Shuber, Megan E Fast, Simon W North
{"title":"哈金斯波段中 O3 光解离的成像研究。","authors":"Nicholas J Shuber, Megan E Fast, Simon W North","doi":"10.1063/5.0230902","DOIUrl":null,"url":null,"abstract":"<p><p>We report a velocity-mapped ion imaging study of the photodissociation of O3 in the Huggins band. The O(3PJ) images show evidence for three electronic channels producing O2(X3Σg-), O2(a1∆g), and O2(b1Σg+) state fragments, with the latter two arising from the spin-forbidden photodissociation of O3. Forward convolution simulations of the derived total translational energy distributions permit extraction of the vibrational state distribution for each O2 electronic state. All these distributions peak near v = 0 and decrease monotonically with the vibrational state. The wavelength-dependent branching of the three electronic channels has been determined and is approximately constant over the wavelength region studied (322-328 nm). We have observed that the O2 electronic state branching ratios depend on the coincident O(3PJ) spin-orbit state, and the O2(b1Σg+) state is particularly sensitive. These results are qualitatively consistent with previous calculations on the coupling of the initially excited state to dissociative states by Rosenwaks and Grebenshchikov [J. Phys. Chem. A. 114, 9809-9819 (2010)]. The spatial anisotropy of the three dissociation channels has been determined through analysis of the O(3P0) angular distributions. The results are consistent with recent calculations but differ from previous experimental reports. The experimental results provide detailed information on the dissociation dynamics and should motivate new calculations.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging study of O3 photodissociation in the Huggins band.\",\"authors\":\"Nicholas J Shuber, Megan E Fast, Simon W North\",\"doi\":\"10.1063/5.0230902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a velocity-mapped ion imaging study of the photodissociation of O3 in the Huggins band. The O(3PJ) images show evidence for three electronic channels producing O2(X3Σg-), O2(a1∆g), and O2(b1Σg+) state fragments, with the latter two arising from the spin-forbidden photodissociation of O3. Forward convolution simulations of the derived total translational energy distributions permit extraction of the vibrational state distribution for each O2 electronic state. All these distributions peak near v = 0 and decrease monotonically with the vibrational state. The wavelength-dependent branching of the three electronic channels has been determined and is approximately constant over the wavelength region studied (322-328 nm). We have observed that the O2 electronic state branching ratios depend on the coincident O(3PJ) spin-orbit state, and the O2(b1Σg+) state is particularly sensitive. These results are qualitatively consistent with previous calculations on the coupling of the initially excited state to dissociative states by Rosenwaks and Grebenshchikov [J. Phys. Chem. A. 114, 9809-9819 (2010)]. The spatial anisotropy of the three dissociation channels has been determined through analysis of the O(3P0) angular distributions. The results are consistent with recent calculations but differ from previous experimental reports. The experimental results provide detailed information on the dissociation dynamics and should motivate new calculations.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230902\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230902","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了对哈金斯波段中 O3 光解离的速度映射离子成像研究。O(3PJ) 图像显示了产生 O2(X3Σg-)、O2(a1Δg)和 O2(b1Σg+)态碎片的三个电子通道的证据,后两个碎片来自 O3 的自旋禁止光解离。通过对得出的总平移能分布进行前向卷积模拟,可以提取出每个 O2 电子态的振动态分布。所有这些分布都在 v = 0 附近达到峰值,并随振动状态单调递减。我们已经确定了三个电子通道随波长变化的分支,在所研究的波长区域(322-328 nm)内,分支近似恒定。我们观察到,O2 电子态分支比取决于重合的 O(3PJ)自旋轨道态,而 O2(b1Σg+)态尤其敏感。这些结果与之前 Rosenwaks 和 Grebenshchikov 对初始激发态与离解态耦合的计算结果在性质上是一致的[J. Phys. Chem. A. 114, 9809-9819 (2010)]。通过分析 O(3P0) 角分布,确定了三个解离通道的空间各向异性。结果与最近的计算结果一致,但与之前的实验报告不同。实验结果提供了关于解离动力学的详细信息,并将推动新的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging study of O3 photodissociation in the Huggins band.

We report a velocity-mapped ion imaging study of the photodissociation of O3 in the Huggins band. The O(3PJ) images show evidence for three electronic channels producing O2(X3Σg-), O2(a1∆g), and O2(b1Σg+) state fragments, with the latter two arising from the spin-forbidden photodissociation of O3. Forward convolution simulations of the derived total translational energy distributions permit extraction of the vibrational state distribution for each O2 electronic state. All these distributions peak near v = 0 and decrease monotonically with the vibrational state. The wavelength-dependent branching of the three electronic channels has been determined and is approximately constant over the wavelength region studied (322-328 nm). We have observed that the O2 electronic state branching ratios depend on the coincident O(3PJ) spin-orbit state, and the O2(b1Σg+) state is particularly sensitive. These results are qualitatively consistent with previous calculations on the coupling of the initially excited state to dissociative states by Rosenwaks and Grebenshchikov [J. Phys. Chem. A. 114, 9809-9819 (2010)]. The spatial anisotropy of the three dissociation channels has been determined through analysis of the O(3P0) angular distributions. The results are consistent with recent calculations but differ from previous experimental reports. The experimental results provide detailed information on the dissociation dynamics and should motivate new calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信