从脑组织的漫反射光谱中学习实时推断分子组成。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-09-01 Epub Date: 2024-09-24 DOI:10.1117/1.JBO.29.9.093509
Ivan Ezhov, Kevin Scibilia, Luca Giannoni, Florian Kofler, Ivan Iliash, Felix Hsieh, Suprosanna Shit, Charly Caredda, Frédéric Lange, Bruno Montcel, Ilias Tachtsidis, Daniel Rueckert
{"title":"从脑组织的漫反射光谱中学习实时推断分子组成。","authors":"Ivan Ezhov, Kevin Scibilia, Luca Giannoni, Florian Kofler, Ivan Iliash, Felix Hsieh, Suprosanna Shit, Charly Caredda, Frédéric Lange, Bruno Montcel, Ilias Tachtsidis, Daniel Rueckert","doi":"10.1117/1.JBO.29.9.093509","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Diffuse optical modalities such as broadband near-infrared spectroscopy (bNIRS) and hyperspectral imaging (HSI) represent a promising alternative for low-cost, non-invasive, and fast monitoring of living tissue. Particularly, the possibility of extracting the molecular composition of the tissue from the optical spectra deems the spectroscopy techniques as a unique diagnostic tool.</p><p><strong>Aim: </strong>No established method exists to streamline the inference of the biochemical composition from the optical spectrum for real-time applications such as surgical monitoring. We analyze a machine learning technique for inference of changes in the molecular composition of brain tissue.</p><p><strong>Approach: </strong>We propose modifications to the existing learnable methodology based on the Beer-Lambert law. We evaluate the method's applicability to linear and nonlinear formulations of this physical law. The approach is tested on data obtained from the bNIRS- and HSI-based monitoring of brain tissue.</p><p><strong>Results: </strong>The results demonstrate that the proposed method enables real-time molecular composition inference while maintaining the accuracy of traditional methods. Preliminary findings show that Beer-Lambert law-based spectral unmixing allows contrasting brain anatomy semantics such as the vessel tree and tumor area.</p><p><strong>Conclusion: </strong>We present a data-driven technique for inferring molecular composition change from diffuse spectroscopy of brain tissue, potentially enabling intra-operative monitoring.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"093509"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421663/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learnable real-time inference of molecular composition from diffuse spectroscopy of brain tissue.\",\"authors\":\"Ivan Ezhov, Kevin Scibilia, Luca Giannoni, Florian Kofler, Ivan Iliash, Felix Hsieh, Suprosanna Shit, Charly Caredda, Frédéric Lange, Bruno Montcel, Ilias Tachtsidis, Daniel Rueckert\",\"doi\":\"10.1117/1.JBO.29.9.093509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Diffuse optical modalities such as broadband near-infrared spectroscopy (bNIRS) and hyperspectral imaging (HSI) represent a promising alternative for low-cost, non-invasive, and fast monitoring of living tissue. Particularly, the possibility of extracting the molecular composition of the tissue from the optical spectra deems the spectroscopy techniques as a unique diagnostic tool.</p><p><strong>Aim: </strong>No established method exists to streamline the inference of the biochemical composition from the optical spectrum for real-time applications such as surgical monitoring. We analyze a machine learning technique for inference of changes in the molecular composition of brain tissue.</p><p><strong>Approach: </strong>We propose modifications to the existing learnable methodology based on the Beer-Lambert law. We evaluate the method's applicability to linear and nonlinear formulations of this physical law. The approach is tested on data obtained from the bNIRS- and HSI-based monitoring of brain tissue.</p><p><strong>Results: </strong>The results demonstrate that the proposed method enables real-time molecular composition inference while maintaining the accuracy of traditional methods. Preliminary findings show that Beer-Lambert law-based spectral unmixing allows contrasting brain anatomy semantics such as the vessel tree and tumor area.</p><p><strong>Conclusion: </strong>We present a data-driven technique for inferring molecular composition change from diffuse spectroscopy of brain tissue, potentially enabling intra-operative monitoring.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 9\",\"pages\":\"093509\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.9.093509\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.093509","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:宽带近红外光谱(bNIRS)和高光谱成像(HSI)等漫反射光学模式是对活体组织进行低成本、非侵入性和快速监测的理想选择。尤其是从光学光谱中提取组织分子成分的可能性使光谱技术成为一种独特的诊断工具。目的:目前还没有成熟的方法来简化从光学光谱中推断生化成分的过程,以用于手术监测等实时应用。我们分析了一种用于推断脑组织分子组成变化的机器学习技术:方法:我们对基于比尔-朗伯定律的现有可学习方法提出了修改建议。我们评估了该方法对这一物理定律的线性和非线性公式的适用性。该方法在基于 bNIRS 和 HSI 的脑组织监测数据上进行了测试:结果表明,所提出的方法可实现实时分子成分推断,同时保持传统方法的准确性。初步研究结果表明,基于比尔-朗伯定律的光谱非混合法可以对比大脑解剖语义,如血管树和肿瘤区域:我们提出了一种数据驱动技术,可从脑组织弥散光谱推断分子组成变化,从而实现术中监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learnable real-time inference of molecular composition from diffuse spectroscopy of brain tissue.

Significance: Diffuse optical modalities such as broadband near-infrared spectroscopy (bNIRS) and hyperspectral imaging (HSI) represent a promising alternative for low-cost, non-invasive, and fast monitoring of living tissue. Particularly, the possibility of extracting the molecular composition of the tissue from the optical spectra deems the spectroscopy techniques as a unique diagnostic tool.

Aim: No established method exists to streamline the inference of the biochemical composition from the optical spectrum for real-time applications such as surgical monitoring. We analyze a machine learning technique for inference of changes in the molecular composition of brain tissue.

Approach: We propose modifications to the existing learnable methodology based on the Beer-Lambert law. We evaluate the method's applicability to linear and nonlinear formulations of this physical law. The approach is tested on data obtained from the bNIRS- and HSI-based monitoring of brain tissue.

Results: The results demonstrate that the proposed method enables real-time molecular composition inference while maintaining the accuracy of traditional methods. Preliminary findings show that Beer-Lambert law-based spectral unmixing allows contrasting brain anatomy semantics such as the vessel tree and tumor area.

Conclusion: We present a data-driven technique for inferring molecular composition change from diffuse spectroscopy of brain tissue, potentially enabling intra-operative monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信