{"title":"阐明酮糖 3-酰亚胺酶中 d-阿洛糖的识别机制。","authors":"Masahiro Watanabe , Yusuke Nakamichi , Shohei Mine","doi":"10.1016/j.jbiosc.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><div><span>d</span>-Allulose is a low-calorie sweetener with multiple nutritional functions that can be produced through <span>d</span>-fructose isomerization by ketose 3-epimerase (KEase). <span>l</span>-Ribulose 3-epimerase from <em>Arthrobacter</em> <em>globiformis</em> (AgLRE) is one of the most important enzymes that produce <span>d</span>-allulose; however, its substrate recognition mechanism is unknown. In this study, the crystal structures of AgLRE and its complex with <span>d</span>-allulose and <span>d</span>-fructose were determined. Upon substrate binding, the hydrophobic residues around the active-site entrance move toward the bound substrate. A comparison of AgLRE and other KEase structures revealed that the substrate-binding residues are not the main factors responsible for its marked specificity for <span>d</span>-allulose and <span>d</span>-fructose, but the hydrophobicity of the active site pocket influences substrate recognition. Particularly, the two hydrophobic regions at the active site entrance are the regulatory elements that modulate substrate recognition by AgLRE. This study provides useful information for designing AgLRE to increase its affinity for <span>d</span>-allulose and <span>d</span>-fructose.</div></div>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":"138 6","pages":"Pages 488-494"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of d-allulose recognition mechanism in ketose 3-epimerase\",\"authors\":\"Masahiro Watanabe , Yusuke Nakamichi , Shohei Mine\",\"doi\":\"10.1016/j.jbiosc.2024.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>d</span>-Allulose is a low-calorie sweetener with multiple nutritional functions that can be produced through <span>d</span>-fructose isomerization by ketose 3-epimerase (KEase). <span>l</span>-Ribulose 3-epimerase from <em>Arthrobacter</em> <em>globiformis</em> (AgLRE) is one of the most important enzymes that produce <span>d</span>-allulose; however, its substrate recognition mechanism is unknown. In this study, the crystal structures of AgLRE and its complex with <span>d</span>-allulose and <span>d</span>-fructose were determined. Upon substrate binding, the hydrophobic residues around the active-site entrance move toward the bound substrate. A comparison of AgLRE and other KEase structures revealed that the substrate-binding residues are not the main factors responsible for its marked specificity for <span>d</span>-allulose and <span>d</span>-fructose, but the hydrophobicity of the active site pocket influences substrate recognition. Particularly, the two hydrophobic regions at the active site entrance are the regulatory elements that modulate substrate recognition by AgLRE. This study provides useful information for designing AgLRE to increase its affinity for <span>d</span>-allulose and <span>d</span>-fructose.</div></div>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":\"138 6\",\"pages\":\"Pages 488-494\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389172324002573\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389172324002573","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Elucidation of d-allulose recognition mechanism in ketose 3-epimerase
d-Allulose is a low-calorie sweetener with multiple nutritional functions that can be produced through d-fructose isomerization by ketose 3-epimerase (KEase). l-Ribulose 3-epimerase from Arthrobacterglobiformis (AgLRE) is one of the most important enzymes that produce d-allulose; however, its substrate recognition mechanism is unknown. In this study, the crystal structures of AgLRE and its complex with d-allulose and d-fructose were determined. Upon substrate binding, the hydrophobic residues around the active-site entrance move toward the bound substrate. A comparison of AgLRE and other KEase structures revealed that the substrate-binding residues are not the main factors responsible for its marked specificity for d-allulose and d-fructose, but the hydrophobicity of the active site pocket influences substrate recognition. Particularly, the two hydrophobic regions at the active site entrance are the regulatory elements that modulate substrate recognition by AgLRE. This study provides useful information for designing AgLRE to increase its affinity for d-allulose and d-fructose.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.