Jaime E. Bayona Solano , Daniel A. Sánchez , Gabriela M. Tonetto
{"title":"利用从蚕豆属植物中提取的新型生物催化剂,通过与 1-辛醇酯化实现乙酰丙酸的价值化","authors":"Jaime E. Bayona Solano , Daniel A. Sánchez , Gabriela M. Tonetto","doi":"10.1016/j.jbiotec.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><div>Levulinic acid, which can be obtained from biomass, has sparked great interest as a biologically-based chemical building block with wide versatility and potential. Its esterification with alcohols of different chain lengths is a promising valorization process for obtaining esters with various applications in the areas of biofuels/biolubricants, food and cosmetics, among others. In this work, the enzymatic esterification of levulinic acid and 1-octanol using a biocatalyst derived from <em>Araujia sericifera</em> latex was studied in systems with and without solvent. The influence of the molar ratio between alcohol and acid (ranging from 2:1–1:9), the biocatalyst loading (between 7.5 % and 17.5 % relative to the acid), the volume of <em>n</em>-heptane used as reaction solvent (from 0 to 4 ml), and the reaction time (6 hours) were investigated. The activity and stability of the biocatalyst in successive uses were also analyzed. A conversion of 49 % was achieved when the reaction was carried out in a solvent-free system, using an alcohol/acid molar ratio of 1:7 and after 5 h of reaction. On the other hand, the conversion was 65.1 % when the reaction was conducted in a system containing 1 ml of <em>n</em>-heptane as solvent, an alcohol/acid molar ratio of 1:8, and 5 h of reaction. In both cases, a temperature as low as 30 °C and an agitation speed of 300 RPM were used.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 100-109"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valorization of levulinic acid by esterification with 1-octanol using a novel biocatalyst derived from Araujia sericifera\",\"authors\":\"Jaime E. Bayona Solano , Daniel A. Sánchez , Gabriela M. Tonetto\",\"doi\":\"10.1016/j.jbiotec.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Levulinic acid, which can be obtained from biomass, has sparked great interest as a biologically-based chemical building block with wide versatility and potential. Its esterification with alcohols of different chain lengths is a promising valorization process for obtaining esters with various applications in the areas of biofuels/biolubricants, food and cosmetics, among others. In this work, the enzymatic esterification of levulinic acid and 1-octanol using a biocatalyst derived from <em>Araujia sericifera</em> latex was studied in systems with and without solvent. The influence of the molar ratio between alcohol and acid (ranging from 2:1–1:9), the biocatalyst loading (between 7.5 % and 17.5 % relative to the acid), the volume of <em>n</em>-heptane used as reaction solvent (from 0 to 4 ml), and the reaction time (6 hours) were investigated. The activity and stability of the biocatalyst in successive uses were also analyzed. A conversion of 49 % was achieved when the reaction was carried out in a solvent-free system, using an alcohol/acid molar ratio of 1:7 and after 5 h of reaction. On the other hand, the conversion was 65.1 % when the reaction was conducted in a system containing 1 ml of <em>n</em>-heptane as solvent, an alcohol/acid molar ratio of 1:8, and 5 h of reaction. In both cases, a temperature as low as 30 °C and an agitation speed of 300 RPM were used.</div></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"395 \",\"pages\":\"Pages 100-109\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002578\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002578","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Valorization of levulinic acid by esterification with 1-octanol using a novel biocatalyst derived from Araujia sericifera
Levulinic acid, which can be obtained from biomass, has sparked great interest as a biologically-based chemical building block with wide versatility and potential. Its esterification with alcohols of different chain lengths is a promising valorization process for obtaining esters with various applications in the areas of biofuels/biolubricants, food and cosmetics, among others. In this work, the enzymatic esterification of levulinic acid and 1-octanol using a biocatalyst derived from Araujia sericifera latex was studied in systems with and without solvent. The influence of the molar ratio between alcohol and acid (ranging from 2:1–1:9), the biocatalyst loading (between 7.5 % and 17.5 % relative to the acid), the volume of n-heptane used as reaction solvent (from 0 to 4 ml), and the reaction time (6 hours) were investigated. The activity and stability of the biocatalyst in successive uses were also analyzed. A conversion of 49 % was achieved when the reaction was carried out in a solvent-free system, using an alcohol/acid molar ratio of 1:7 and after 5 h of reaction. On the other hand, the conversion was 65.1 % when the reaction was conducted in a system containing 1 ml of n-heptane as solvent, an alcohol/acid molar ratio of 1:8, and 5 h of reaction. In both cases, a temperature as low as 30 °C and an agitation speed of 300 RPM were used.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.