{"title":"紫斑猴转录因子 comp54181_c0 的功能验证","authors":"Chan Zhang, Haijiao Wang, Arzugul Ablimit, Yufei Zhao, Qing Sun, HuiJun Dong, Bobo Zhang, Chengjian Liu, Chengtao Wang","doi":"10.1002/jobm.202400469","DOIUrl":null,"url":null,"abstract":"<p><p>Monacolin K is a valuable secondary metabolite produced after a period of fermentation by Monascus purpureus; however, our current understanding of the regulatory mechanisms of its synthesis remains incomplete. This study conducted functional analysis on the key transcription factor, comp54181_c0, that is involved in the synthesis of monacolin K in Monascus. Mutant strains with either knockout or overexpression of comp54181_c0 were constructed using CRISPR/Cas9. A comparison between the knockout and overexpression strains revealed changes in fungal morphology and growth, with a significant increase in the production of Monascus pigments and monacolin K when comp54181_c0 was absent. Real-time fluorescence quantitative PCR analysis revealed that comp54181_c0 significantly influenced the transcription of key genes related to monacolin K biosynthesis in Monascus. In conclusion, our study elucidates the crucial role of comp54181_c0 in Monascus, enriches our understanding of fungal secondary metabolite development and regulation, and provides a foundation for the development and regulation of Monascus and monacolin K production.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Verification of Transcription Factor comp54181_c0 in Monascus purpureus.\",\"authors\":\"Chan Zhang, Haijiao Wang, Arzugul Ablimit, Yufei Zhao, Qing Sun, HuiJun Dong, Bobo Zhang, Chengjian Liu, Chengtao Wang\",\"doi\":\"10.1002/jobm.202400469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monacolin K is a valuable secondary metabolite produced after a period of fermentation by Monascus purpureus; however, our current understanding of the regulatory mechanisms of its synthesis remains incomplete. This study conducted functional analysis on the key transcription factor, comp54181_c0, that is involved in the synthesis of monacolin K in Monascus. Mutant strains with either knockout or overexpression of comp54181_c0 were constructed using CRISPR/Cas9. A comparison between the knockout and overexpression strains revealed changes in fungal morphology and growth, with a significant increase in the production of Monascus pigments and monacolin K when comp54181_c0 was absent. Real-time fluorescence quantitative PCR analysis revealed that comp54181_c0 significantly influenced the transcription of key genes related to monacolin K biosynthesis in Monascus. In conclusion, our study elucidates the crucial role of comp54181_c0 in Monascus, enriches our understanding of fungal secondary metabolite development and regulation, and provides a foundation for the development and regulation of Monascus and monacolin K production.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.202400469\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400469","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
莫纳可林 K 是紫云英莫纳可菌(Monascus purpureus)发酵一段时间后产生的一种有价值的次级代谢产物;然而,目前我们对其合成的调控机制的了解仍不全面。本研究对参与紫云英莫纳菌素 K 合成的关键转录因子 comp54181_c0 进行了功能分析。利用 CRISPR/Cas9 技术构建了敲除或过表达 comp54181_c0 的突变株。通过比较基因敲除和过表达菌株,发现真菌的形态和生长发生了变化,当comp54181_c0缺失时,莫纳菌素和莫纳可林 K的产量显著增加。实时荧光定量 PCR 分析显示,comp54181_c0 显著影响了与莫纳菌素 K 生物合成相关的关键基因的转录。总之,我们的研究阐明了 comp54181_c0 在莫纳氏菌中的关键作用,丰富了我们对真菌次生代谢产物的发育和调控的认识,为莫纳氏菌的发育和调控以及莫纳可林 K 的产生奠定了基础。
Functional Verification of Transcription Factor comp54181_c0 in Monascus purpureus.
Monacolin K is a valuable secondary metabolite produced after a period of fermentation by Monascus purpureus; however, our current understanding of the regulatory mechanisms of its synthesis remains incomplete. This study conducted functional analysis on the key transcription factor, comp54181_c0, that is involved in the synthesis of monacolin K in Monascus. Mutant strains with either knockout or overexpression of comp54181_c0 were constructed using CRISPR/Cas9. A comparison between the knockout and overexpression strains revealed changes in fungal morphology and growth, with a significant increase in the production of Monascus pigments and monacolin K when comp54181_c0 was absent. Real-time fluorescence quantitative PCR analysis revealed that comp54181_c0 significantly influenced the transcription of key genes related to monacolin K biosynthesis in Monascus. In conclusion, our study elucidates the crucial role of comp54181_c0 in Monascus, enriches our understanding of fungal secondary metabolite development and regulation, and provides a foundation for the development and regulation of Monascus and monacolin K production.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).