Wang Bingyu, Qiu Jun, Liu Bingyang, Yang Xi, Zhou Jianqing, Lian Jiangfang
{"title":"三甲胺 N-氧化物可促进 PERK 介导的内皮-间充质转化和细胞凋亡,从而加重动脉粥样硬化。","authors":"Wang Bingyu, Qiu Jun, Liu Bingyang, Yang Xi, Zhou Jianqing, Lian Jiangfang","doi":"10.1016/j.intimp.2024.113209","DOIUrl":null,"url":null,"abstract":"<p><p>The endothelial-mesenchymal transition (EndMT) is involved in the development of atherosclerosis (AS) and is a key process in vascular endothelial injury. Oxidative stress, inflammation, and apoptosis are common causes of EndMT, and EndMT progression can further accelerate the development of AS. The metabolite trimethylamine N-oxide (TMAO) is produced by the gut microbiome and is implicated in the development of several diseases, including diabetes and chronic kidney disease. However, the impact of TMAO on transforming growth factor β1(TGF-β1)-induced EndMT remains unclear. We hypothesize that TMAO exacerbates plaque formation and cardiac function impairment by promoting EndMT. Herein, we showed that high serum TMAO levels caused plaque formation, cardiac function damage and haemodynamic changes in ApoE<sup>-/-</sup> mice. In vitro, TMAO upregulated mesenchymal markers and downregulated endothelial markers in HAECs. Furthermore, TMAO increased the migratory capacity of EndMT cells. Mechanistically, we found that PERK downregulation could alleviate TMAO-induced oxidative stress, EndMT, plaque formation and cardiac function damage. Further study showed that activated transcription factor 3 (ATF3), the downstream molecule of protein kinase RNA-like endoplasmic reticulum kinase (PERK), could bind with TGF-β1/2 and affect EndMT. Overall, TMAO promotes EndMT, possibly through the PERK-eIF2α-ATF4-CHOP or the PERk-eIF2α-ATF3-TGF-β signalling pathways.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"142 Pt B","pages":"113209"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trimethylamine N-oxide promotes PERK-mediated endothelial-mesenchymal transition and apoptosis thereby aggravates atherosclerosis.\",\"authors\":\"Wang Bingyu, Qiu Jun, Liu Bingyang, Yang Xi, Zhou Jianqing, Lian Jiangfang\",\"doi\":\"10.1016/j.intimp.2024.113209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endothelial-mesenchymal transition (EndMT) is involved in the development of atherosclerosis (AS) and is a key process in vascular endothelial injury. Oxidative stress, inflammation, and apoptosis are common causes of EndMT, and EndMT progression can further accelerate the development of AS. The metabolite trimethylamine N-oxide (TMAO) is produced by the gut microbiome and is implicated in the development of several diseases, including diabetes and chronic kidney disease. However, the impact of TMAO on transforming growth factor β1(TGF-β1)-induced EndMT remains unclear. We hypothesize that TMAO exacerbates plaque formation and cardiac function impairment by promoting EndMT. Herein, we showed that high serum TMAO levels caused plaque formation, cardiac function damage and haemodynamic changes in ApoE<sup>-/-</sup> mice. In vitro, TMAO upregulated mesenchymal markers and downregulated endothelial markers in HAECs. Furthermore, TMAO increased the migratory capacity of EndMT cells. Mechanistically, we found that PERK downregulation could alleviate TMAO-induced oxidative stress, EndMT, plaque formation and cardiac function damage. Further study showed that activated transcription factor 3 (ATF3), the downstream molecule of protein kinase RNA-like endoplasmic reticulum kinase (PERK), could bind with TGF-β1/2 and affect EndMT. Overall, TMAO promotes EndMT, possibly through the PERK-eIF2α-ATF4-CHOP or the PERk-eIF2α-ATF3-TGF-β signalling pathways.</p>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"142 Pt B\",\"pages\":\"113209\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.intimp.2024.113209\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113209","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The endothelial-mesenchymal transition (EndMT) is involved in the development of atherosclerosis (AS) and is a key process in vascular endothelial injury. Oxidative stress, inflammation, and apoptosis are common causes of EndMT, and EndMT progression can further accelerate the development of AS. The metabolite trimethylamine N-oxide (TMAO) is produced by the gut microbiome and is implicated in the development of several diseases, including diabetes and chronic kidney disease. However, the impact of TMAO on transforming growth factor β1(TGF-β1)-induced EndMT remains unclear. We hypothesize that TMAO exacerbates plaque formation and cardiac function impairment by promoting EndMT. Herein, we showed that high serum TMAO levels caused plaque formation, cardiac function damage and haemodynamic changes in ApoE-/- mice. In vitro, TMAO upregulated mesenchymal markers and downregulated endothelial markers in HAECs. Furthermore, TMAO increased the migratory capacity of EndMT cells. Mechanistically, we found that PERK downregulation could alleviate TMAO-induced oxidative stress, EndMT, plaque formation and cardiac function damage. Further study showed that activated transcription factor 3 (ATF3), the downstream molecule of protein kinase RNA-like endoplasmic reticulum kinase (PERK), could bind with TGF-β1/2 and affect EndMT. Overall, TMAO promotes EndMT, possibly through the PERK-eIF2α-ATF4-CHOP or the PERk-eIF2α-ATF3-TGF-β signalling pathways.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.