scCrab:基于贝叶斯神经网络的参考引导癌细胞识别方法

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Heyang Hua, Wenxin Long, Yan Pan, Siyu Li, Jianyu Zhou, Haixin Wang, Shengquan Chen
{"title":"scCrab:基于贝叶斯神经网络的参考引导癌细胞识别方法","authors":"Heyang Hua, Wenxin Long, Yan Pan, Siyu Li, Jianyu Zhou, Haixin Wang, Shengquan Chen","doi":"10.1007/s12539-024-00655-6","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scCrab: A Reference-Guided Cancer Cell Identification Method based on Bayesian Neural Networks.\",\"authors\":\"Heyang Hua, Wenxin Long, Yan Pan, Siyu Li, Jianyu Zhou, Haixin Wang, Shengquan Chen\",\"doi\":\"10.1007/s12539-024-00655-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00655-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00655-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是全球关注的重大公共卫生问题,早期发现可大大提高治疗效果。因此,癌细胞的鉴定作为癌症诊断的主要方法具有重要意义。随着单细胞 RNA 测序(scRNA-seq)技术的发展,与耗时且可重复性较低的人工鉴定方法相比,计算方法可以更有效地解决单细胞水平的癌细胞鉴定问题。然而,现有的计算方法都显示出不理想的识别性能,而且缺乏将外部参考数据作为先验信息的能力。在此,我们提出了一种参考指导的自动癌细胞识别方法 scCrab,该方法基于具有多头自我注意机制的贝叶斯神经网络(BNN)和线性回归模型进行集合学习。通过在各种数据集上进行一系列实验,我们系统地验证了 scCrab 在数据集内和数据集间预测方面的卓越性能。此外,我们还证明了 scCrab 对辍学率和样本大小的鲁棒性,并进行了消融实验,以研究 scCrab 中各组成部分的贡献。此外,作为癌细胞识别的专用模型,scCrab 能在识别过程中有效捕捉与癌症相关的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scCrab: A Reference-Guided Cancer Cell Identification Method based on Bayesian Neural Networks.

Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信