从黑貂鱼 Anoplopoma fimbria 中建立新型自发永生幼虫细胞系并确定其特征。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Eric R Friesen, Amy K Long, Kyle A Garver
{"title":"从黑貂鱼 Anoplopoma fimbria 中建立新型自发永生幼虫细胞系并确定其特征。","authors":"Eric R Friesen, Amy K Long, Kyle A Garver","doi":"10.1007/s11626-024-00975-3","DOIUrl":null,"url":null,"abstract":"<p><p>Sablefish Anoplopoma fimbria is a groundfish of the North Pacific Ocean typically found in sea floor habitat at depths to 2700 m. Prized as a food fish with exceptionally high market value, sablefish aquaculture has been sought to provide a sustainable source of this fish to meet market demands. While commercial culture has successfully produced market-sized fish in Pacific coastal environments, production has been hampered by disease and the overall lack of information on sablefish health and immunology. To begin to address these knowledge gaps, herein we describe the isolation and characterization of spontaneously immortalized sablefish larval cell lines (AFL). Six sublines were established from pools of early yolk-sac larvae, while attempts to develop tissue-specific-derived cell lines were unsuccessful. The six yolk-sac larval cell lines each display two morphologies in culture, an elongated fibroblast-like cell type, and a rounded squamous or epithelial-like cell type. Cytogenetic characterization suggests that both cell types are diploid (2n = 48) with 24 pairs of chromosomes, 23 pairs of autosomes, and 1 pair of sex chromosomes. A small proportion (11%) of AFL cells display tetraploidy. Incubation temperature and medium composition experiments revealed HEPES buffered L-15 media containing 10-20% FBS at temperatures between 15 and 18° C yielded optimal cell growth. These growth characteristics suggest that sablefish larval cells display a robustness for varying growth conditions. The establishment of AFL cell lines provides a foundational tool to study the physiology, health, immunology, and cell and molecular biology of sablefish.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment and characterization of novel spontaneously immortalized larval cell lines from sablefish Anoplopoma fimbria.\",\"authors\":\"Eric R Friesen, Amy K Long, Kyle A Garver\",\"doi\":\"10.1007/s11626-024-00975-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sablefish Anoplopoma fimbria is a groundfish of the North Pacific Ocean typically found in sea floor habitat at depths to 2700 m. Prized as a food fish with exceptionally high market value, sablefish aquaculture has been sought to provide a sustainable source of this fish to meet market demands. While commercial culture has successfully produced market-sized fish in Pacific coastal environments, production has been hampered by disease and the overall lack of information on sablefish health and immunology. To begin to address these knowledge gaps, herein we describe the isolation and characterization of spontaneously immortalized sablefish larval cell lines (AFL). Six sublines were established from pools of early yolk-sac larvae, while attempts to develop tissue-specific-derived cell lines were unsuccessful. The six yolk-sac larval cell lines each display two morphologies in culture, an elongated fibroblast-like cell type, and a rounded squamous or epithelial-like cell type. Cytogenetic characterization suggests that both cell types are diploid (2n = 48) with 24 pairs of chromosomes, 23 pairs of autosomes, and 1 pair of sex chromosomes. A small proportion (11%) of AFL cells display tetraploidy. Incubation temperature and medium composition experiments revealed HEPES buffered L-15 media containing 10-20% FBS at temperatures between 15 and 18° C yielded optimal cell growth. These growth characteristics suggest that sablefish larval cells display a robustness for varying growth conditions. The establishment of AFL cell lines provides a foundational tool to study the physiology, health, immunology, and cell and molecular biology of sablefish.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00975-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00975-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

黑貂鱼(Anoplopoma fimbria)是北太平洋的一种底层鱼类,通常生活在水深 2700 米的海底栖息地。黑貂鱼是一种具有极高市场价值的食用鱼,人们一直在寻求黑貂鱼水产养殖,以提供可持续的黑貂鱼来源,满足市场需求。虽然商业养殖已成功地在太平洋沿岸环境中生产出市场规模的鱼类,但由于疾病以及总体上缺乏黑貂鱼健康和免疫学方面的信息,生产一直受到阻碍。为了填补这些知识空白,我们在本文中介绍了自发永生化貂鱼幼鱼细胞系(AFL)的分离和特征描述。从早期卵黄囊幼体池中建立了六个亚系,而开发组织特异性细胞系的尝试并不成功。六种卵黄囊幼虫细胞系在培养过程中分别显示出两种形态,一种是拉长的成纤维细胞样细胞类型,另一种是圆形的鳞状或上皮样细胞类型。细胞遗传学特征表明,这两种细胞类型都是二倍体(2n = 48),有 24 对染色体、23 对常染色体和 1 对性染色体。一小部分(11%)AFL 细胞显示四倍体。孵育温度和培养基成分实验表明,在 15 至 18 摄氏度的温度下,含有 10-20% FBS 的 HEPES 缓冲 L-15 培养基能使细胞获得最佳生长。这些生长特性表明,黑貂鱼幼体细胞在不同的生长条件下都表现出很强的生长能力。黑貂鱼细胞系的建立为研究黑貂鱼的生理、健康、免疫学以及细胞和分子生物学提供了一个基础工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishment and characterization of novel spontaneously immortalized larval cell lines from sablefish Anoplopoma fimbria.

Sablefish Anoplopoma fimbria is a groundfish of the North Pacific Ocean typically found in sea floor habitat at depths to 2700 m. Prized as a food fish with exceptionally high market value, sablefish aquaculture has been sought to provide a sustainable source of this fish to meet market demands. While commercial culture has successfully produced market-sized fish in Pacific coastal environments, production has been hampered by disease and the overall lack of information on sablefish health and immunology. To begin to address these knowledge gaps, herein we describe the isolation and characterization of spontaneously immortalized sablefish larval cell lines (AFL). Six sublines were established from pools of early yolk-sac larvae, while attempts to develop tissue-specific-derived cell lines were unsuccessful. The six yolk-sac larval cell lines each display two morphologies in culture, an elongated fibroblast-like cell type, and a rounded squamous or epithelial-like cell type. Cytogenetic characterization suggests that both cell types are diploid (2n = 48) with 24 pairs of chromosomes, 23 pairs of autosomes, and 1 pair of sex chromosomes. A small proportion (11%) of AFL cells display tetraploidy. Incubation temperature and medium composition experiments revealed HEPES buffered L-15 media containing 10-20% FBS at temperatures between 15 and 18° C yielded optimal cell growth. These growth characteristics suggest that sablefish larval cells display a robustness for varying growth conditions. The establishment of AFL cell lines provides a foundational tool to study the physiology, health, immunology, and cell and molecular biology of sablefish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信