高海拔肺水肿的生理病理。

IF 1.6 4区 医学 Q4 BIOPHYSICS
Giuseppe Miserocchi
{"title":"高海拔肺水肿的生理病理。","authors":"Giuseppe Miserocchi","doi":"10.1089/ham.2024.0037","DOIUrl":null,"url":null,"abstract":"<p><p>The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.</p>","PeriodicalId":12975,"journal":{"name":"High altitude medicine & biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiopathology of High-Altitude Pulmonary Edema.\",\"authors\":\"Giuseppe Miserocchi\",\"doi\":\"10.1089/ham.2024.0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.</p>\",\"PeriodicalId\":12975,\"journal\":{\"name\":\"High altitude medicine & biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High altitude medicine & biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ham.2024.0037\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High altitude medicine & biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ham.2024.0037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

气血屏障设计精良,可实现气体扩散与血液流动的匹配。这一功能是通过将其厚度保持在 0.5 µm 以下来实现的,这一特性意味着要将血管外的肺水保持在最低水平。暴露在低压缺氧环境中,尤其是在运动时,有可能导致所谓的高海拔肺水肿(HAPE)。这篇文章通过将人类暴露于高海拔地区的现有数据与动物实验方法的数据相结合,阐述了高海拔肺水肿的生理病理。文章还提出了一个模型,根据肺泡-毛细血管摄氧效率和气血屏障的估计形态,来描述高海拔肺水肿非易感人群和易感人群的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiopathology of High-Altitude Pulmonary Edema.

The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High altitude medicine & biology
High altitude medicine & biology 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.80
自引率
9.50%
发文量
44
审稿时长
>12 weeks
期刊介绍: High Altitude Medicine & Biology is the only peer-reviewed journal covering the medical and biological issues that impact human life at high altitudes. The Journal delivers critical findings on the impact of high altitude on lung and heart disease, appetite and weight loss, pulmonary and cerebral edema, hypertension, dehydration, infertility, and other diseases. It covers the full spectrum of high altitude life sciences from pathology to human and animal ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信