Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A K M Rafiqul Bari, Kyung-Wan Nam
{"title":"锂离子电池阴极材料合成用聚合物和螯合凝胶前驱体综述。","authors":"Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A K M Rafiqul Bari, Kyung-Wan Nam","doi":"10.3390/gels10090586","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431264/pdf/","citationCount":"0","resultStr":"{\"title\":\"Review on the Polymeric and Chelate Gel Precursor for Li-Ion Battery Cathode Material Synthesis.\",\"authors\":\"Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A K M Rafiqul Bari, Kyung-Wan Nam\",\"doi\":\"10.3390/gels10090586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10090586\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090586","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Review on the Polymeric and Chelate Gel Precursor for Li-Ion Battery Cathode Material Synthesis.
The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.