Karla Lizette Tovar-Carrillo, Lizett Trujillo-Morales, Juan Carlos Cuevas-González, Judith Virginia Ríos-Arana, León Francisco Espinosa-Cristobal, Erasto Armando Zaragoza-Contreras
{"title":"富含葡萄籽提取物的纤维素水凝胶在牙科应用中的抗菌特性:体外试验、细胞相容性和生物相容性。","authors":"Karla Lizette Tovar-Carrillo, Lizett Trujillo-Morales, Juan Carlos Cuevas-González, Judith Virginia Ríos-Arana, León Francisco Espinosa-Cristobal, Erasto Armando Zaragoza-Contreras","doi":"10.3390/gels10090606","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels elaborated from <i>Dasylirion</i> spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm<sup>2</sup> (for the samples without GSE) and went to 40 N/mm<sup>2</sup> for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against <i>S. mutans</i>, <i>E. Faecalis</i>, <i>S. aureus</i>, and <i>P. aureginosa</i>. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility.\",\"authors\":\"Karla Lizette Tovar-Carrillo, Lizett Trujillo-Morales, Juan Carlos Cuevas-González, Judith Virginia Ríos-Arana, León Francisco Espinosa-Cristobal, Erasto Armando Zaragoza-Contreras\",\"doi\":\"10.3390/gels10090606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels elaborated from <i>Dasylirion</i> spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm<sup>2</sup> (for the samples without GSE) and went to 40 N/mm<sup>2</sup> for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against <i>S. mutans</i>, <i>E. Faecalis</i>, <i>S. aureus</i>, and <i>P. aureginosa</i>. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10090606\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090606","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility.
Hydrogels elaborated from Dasylirion spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm2 (for the samples without GSE) and went to 40 N/mm2 for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against S. mutans, E. Faecalis, S. aureus, and P. aureginosa. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.