Gabriela Buema, Adina-Elena Segneanu, Dumitru-Daniel Herea, Ioan Grozescu
{"title":"用于水质修复的凝胶:当前研究与展望。","authors":"Gabriela Buema, Adina-Elena Segneanu, Dumitru-Daniel Herea, Ioan Grozescu","doi":"10.3390/gels10090585","DOIUrl":null,"url":null,"abstract":"<p><p>The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gels for Water Remediation: Current Research and Perspectives.\",\"authors\":\"Gabriela Buema, Adina-Elena Segneanu, Dumitru-Daniel Herea, Ioan Grozescu\",\"doi\":\"10.3390/gels10090585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10090585\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090585","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Gels for Water Remediation: Current Research and Perspectives.
The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.