Zehui Liu, Wenxia Zhang, Haili Wang, Pingping Shangguan, Tong Pan, Yimu Yang, Yi Zhang, Xi Mao, Yingle Liu, Qi Zhang
{"title":"设计的 CRISPR RNA 提高了 hfCas13X 的 RNA 切割效率。","authors":"Zehui Liu, Wenxia Zhang, Haili Wang, Pingping Shangguan, Tong Pan, Yimu Yang, Yi Zhang, Xi Mao, Yingle Liu, Qi Zhang","doi":"10.1002/1873-3468.15025","DOIUrl":null,"url":null,"abstract":"<p>As the most compact variant in the Cas13 family, CRISPR-Cas13X holds considerable promise for gene therapy applications. The development of high-fidelity Cas13X (hfCas13X) mutants has enhanced the safety profile for <i>in vivo</i> applications. However, a notable reduction in on-target cleavage efficiency accompanies the diminished collateral cleavage activity in hfCas13X. In this study, we obtained two engineered crRNA mutants that notably enhance the on-target cleavage efficiency of hfCas13X. Furthermore, we have identified a novel crRNA structure that consistently augments the on-target cleavage efficiency of hfCas13X across various cellular environments, without significant enhancement of its collateral activity. These findings collectively enrich the gene-editing toolkit, presenting a more effective hfCas13X system for future research and application.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 19","pages":"2438-2449"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.15025","citationCount":"0","resultStr":"{\"title\":\"Engineered CRISPR RNA improves the RNA cleavage efficiency of hfCas13X\",\"authors\":\"Zehui Liu, Wenxia Zhang, Haili Wang, Pingping Shangguan, Tong Pan, Yimu Yang, Yi Zhang, Xi Mao, Yingle Liu, Qi Zhang\",\"doi\":\"10.1002/1873-3468.15025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the most compact variant in the Cas13 family, CRISPR-Cas13X holds considerable promise for gene therapy applications. The development of high-fidelity Cas13X (hfCas13X) mutants has enhanced the safety profile for <i>in vivo</i> applications. However, a notable reduction in on-target cleavage efficiency accompanies the diminished collateral cleavage activity in hfCas13X. In this study, we obtained two engineered crRNA mutants that notably enhance the on-target cleavage efficiency of hfCas13X. Furthermore, we have identified a novel crRNA structure that consistently augments the on-target cleavage efficiency of hfCas13X across various cellular environments, without significant enhancement of its collateral activity. These findings collectively enrich the gene-editing toolkit, presenting a more effective hfCas13X system for future research and application.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\"598 19\",\"pages\":\"2438-2449\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.15025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.15025\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.15025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Engineered CRISPR RNA improves the RNA cleavage efficiency of hfCas13X
As the most compact variant in the Cas13 family, CRISPR-Cas13X holds considerable promise for gene therapy applications. The development of high-fidelity Cas13X (hfCas13X) mutants has enhanced the safety profile for in vivo applications. However, a notable reduction in on-target cleavage efficiency accompanies the diminished collateral cleavage activity in hfCas13X. In this study, we obtained two engineered crRNA mutants that notably enhance the on-target cleavage efficiency of hfCas13X. Furthermore, we have identified a novel crRNA structure that consistently augments the on-target cleavage efficiency of hfCas13X across various cellular environments, without significant enhancement of its collateral activity. These findings collectively enrich the gene-editing toolkit, presenting a more effective hfCas13X system for future research and application.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.