Xiaoxuan Jia, Youping Xiao, Hui Zhang, Jiazheng Li, Shiying Lv, Yinli Zhang, Fan Chai, Caizhen Feng, Yulu Liu, Haoquan Chen, Feiyu Ma, Shengcai Wei, Jin Cheng, Sen Zhang, Zhidong Gao, Nan Hong, Lei Tang, Yi Wang
{"title":"CT 评估的形态特征可预测胃肠道间质瘤的有丝分裂指数。","authors":"Xiaoxuan Jia, Youping Xiao, Hui Zhang, Jiazheng Li, Shiying Lv, Yinli Zhang, Fan Chai, Caizhen Feng, Yulu Liu, Haoquan Chen, Feiyu Ma, Shengcai Wei, Jin Cheng, Sen Zhang, Zhidong Gao, Nan Hong, Lei Tang, Yi Wang","doi":"10.1007/s00330-024-11087-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the correlation of the mitotic index (MI) of 1-5 cm gastric gastrointestinal stromal tumors (gGISTs) with CT-identified morphological and first-order radiomics features, incorporating subgroup analysis based on tumor size.</p><p><strong>Methods: </strong>We enrolled 344 patients across four institutions, each pathologically diagnosed with 1-5 cm gGISTs and undergoing preoperative contrast-enhanced CT scans. Univariate and multivariate analyses were performed to investigate the independent CT morphological high-risk features of MI. Lesions were categorized into four subgroups based on their pathological LD: 1-2 cm (n = 69), 2-3 cm (n = 96), 3-4 cm (n = 107), and 4-5 cm (n = 72). CT morphological high-risk features of MI were evaluated in each subgroup. In addition, first-order radiomics features were extracted on CT images of the venous phase, and the association between these features and MI was investigated.</p><p><strong>Results: </strong>Tumor size (p = 0.04, odds ratio, 1.41; 95% confidence interval: 1.01-1.96) and invasive margin (p < 0.01, odds ratio, 4.55; 95% confidence interval: 1.77-11.73) emerged as independent high-risk features for MI > 5 of 1-5 cm gGISTs from multivariate analysis. In the subgroup analysis, the invasive margin was correlated with MI > 5 in 3-4 cm and 4-5 cm gGISTs (p = 0.02, p = 0.03), and potentially correlated with MI > 5 in 2-3 cm gGISTs (p = 0.07). The energy was the sole first-order radiomics feature significantly correlated with gGISTs of MI > 5, displaying a strong correlation with CT-detected tumor size (Pearson's ρ = 0.85, p < 0.01).</p><p><strong>Conclusions: </strong>The invasive margin stands out as the sole independent CT morphological high-risk feature for 1-5 cm gGISTs after tumor size-based subgroup analysis, overshadowing intratumoral morphological characteristics and first-order radiomics features.</p><p><strong>Key points: </strong>Question How can accurate preoperative risk stratification of gGISTs be achieved to support treatment decision-making? Findings Invasive margins may serve as a reliable marker for risk prediction in gGISTs up to 5 cm, rather than surface ulceration, irregular shape, necrosis, or heterogeneous enhancement. Clinical relevance For gGISTs measuring up to 5 cm, preoperative prediction of the metastatic risk could help select patients who could be treated by endoscopic resection, thereby avoiding overtreatment.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"2094-2105"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT assessed morphological features can predict higher mitotic index in gastric gastrointestinal stromal tumors.\",\"authors\":\"Xiaoxuan Jia, Youping Xiao, Hui Zhang, Jiazheng Li, Shiying Lv, Yinli Zhang, Fan Chai, Caizhen Feng, Yulu Liu, Haoquan Chen, Feiyu Ma, Shengcai Wei, Jin Cheng, Sen Zhang, Zhidong Gao, Nan Hong, Lei Tang, Yi Wang\",\"doi\":\"10.1007/s00330-024-11087-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To investigate the correlation of the mitotic index (MI) of 1-5 cm gastric gastrointestinal stromal tumors (gGISTs) with CT-identified morphological and first-order radiomics features, incorporating subgroup analysis based on tumor size.</p><p><strong>Methods: </strong>We enrolled 344 patients across four institutions, each pathologically diagnosed with 1-5 cm gGISTs and undergoing preoperative contrast-enhanced CT scans. Univariate and multivariate analyses were performed to investigate the independent CT morphological high-risk features of MI. Lesions were categorized into four subgroups based on their pathological LD: 1-2 cm (n = 69), 2-3 cm (n = 96), 3-4 cm (n = 107), and 4-5 cm (n = 72). CT morphological high-risk features of MI were evaluated in each subgroup. In addition, first-order radiomics features were extracted on CT images of the venous phase, and the association between these features and MI was investigated.</p><p><strong>Results: </strong>Tumor size (p = 0.04, odds ratio, 1.41; 95% confidence interval: 1.01-1.96) and invasive margin (p < 0.01, odds ratio, 4.55; 95% confidence interval: 1.77-11.73) emerged as independent high-risk features for MI > 5 of 1-5 cm gGISTs from multivariate analysis. In the subgroup analysis, the invasive margin was correlated with MI > 5 in 3-4 cm and 4-5 cm gGISTs (p = 0.02, p = 0.03), and potentially correlated with MI > 5 in 2-3 cm gGISTs (p = 0.07). The energy was the sole first-order radiomics feature significantly correlated with gGISTs of MI > 5, displaying a strong correlation with CT-detected tumor size (Pearson's ρ = 0.85, p < 0.01).</p><p><strong>Conclusions: </strong>The invasive margin stands out as the sole independent CT morphological high-risk feature for 1-5 cm gGISTs after tumor size-based subgroup analysis, overshadowing intratumoral morphological characteristics and first-order radiomics features.</p><p><strong>Key points: </strong>Question How can accurate preoperative risk stratification of gGISTs be achieved to support treatment decision-making? Findings Invasive margins may serve as a reliable marker for risk prediction in gGISTs up to 5 cm, rather than surface ulceration, irregular shape, necrosis, or heterogeneous enhancement. Clinical relevance For gGISTs measuring up to 5 cm, preoperative prediction of the metastatic risk could help select patients who could be treated by endoscopic resection, thereby avoiding overtreatment.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"2094-2105\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-11087-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11087-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
CT assessed morphological features can predict higher mitotic index in gastric gastrointestinal stromal tumors.
Objectives: To investigate the correlation of the mitotic index (MI) of 1-5 cm gastric gastrointestinal stromal tumors (gGISTs) with CT-identified morphological and first-order radiomics features, incorporating subgroup analysis based on tumor size.
Methods: We enrolled 344 patients across four institutions, each pathologically diagnosed with 1-5 cm gGISTs and undergoing preoperative contrast-enhanced CT scans. Univariate and multivariate analyses were performed to investigate the independent CT morphological high-risk features of MI. Lesions were categorized into four subgroups based on their pathological LD: 1-2 cm (n = 69), 2-3 cm (n = 96), 3-4 cm (n = 107), and 4-5 cm (n = 72). CT morphological high-risk features of MI were evaluated in each subgroup. In addition, first-order radiomics features were extracted on CT images of the venous phase, and the association between these features and MI was investigated.
Results: Tumor size (p = 0.04, odds ratio, 1.41; 95% confidence interval: 1.01-1.96) and invasive margin (p < 0.01, odds ratio, 4.55; 95% confidence interval: 1.77-11.73) emerged as independent high-risk features for MI > 5 of 1-5 cm gGISTs from multivariate analysis. In the subgroup analysis, the invasive margin was correlated with MI > 5 in 3-4 cm and 4-5 cm gGISTs (p = 0.02, p = 0.03), and potentially correlated with MI > 5 in 2-3 cm gGISTs (p = 0.07). The energy was the sole first-order radiomics feature significantly correlated with gGISTs of MI > 5, displaying a strong correlation with CT-detected tumor size (Pearson's ρ = 0.85, p < 0.01).
Conclusions: The invasive margin stands out as the sole independent CT morphological high-risk feature for 1-5 cm gGISTs after tumor size-based subgroup analysis, overshadowing intratumoral morphological characteristics and first-order radiomics features.
Key points: Question How can accurate preoperative risk stratification of gGISTs be achieved to support treatment decision-making? Findings Invasive margins may serve as a reliable marker for risk prediction in gGISTs up to 5 cm, rather than surface ulceration, irregular shape, necrosis, or heterogeneous enhancement. Clinical relevance For gGISTs measuring up to 5 cm, preoperative prediction of the metastatic risk could help select patients who could be treated by endoscopic resection, thereby avoiding overtreatment.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.