{"title":"抗菌肽和硫化铜负载沸石咪唑啉框架-8 纳米粒子与光热疗法的协同杀菌效果。","authors":"Duoduo Zhang , Shiyue Bie , Mhd Anas Tomeh , Xinyu Zhang , Xiubo Zhao","doi":"10.1016/j.ejpb.2024.114516","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance (AMR) has emerged as a significant threat to human health. Antimicrobial peptides (AMPs) have proven to be an effective strategy against antibiotic-resistant bacteria, given their capacity to swiftly disrupt microorganism membranes and alter cell morphology. A common limitation, however, lies in the inherent toxicity of many AMPs and their vulnerability to protease degradation within the body. Photothermal therapy (PTT) stands out as a widely utilized approach in combating antibiotic-resistant bacterial infections, boasting high efficiency and non-invasive benefits. To enhance the stability and antibacterial efficacy of AMPs, a novel approach involving the combination of AMPs and PTT has been proposed. This study focuses on the encapsulation of At10 (an AMP designed by our group), and copper sulfide nanoparticles (CuS NPs) within zeolitic imidazolate framework-8 (ZIF-8) to form nanocomposites (At10/CuS@ZIF-8). The encapsulated CuS NPs exhibit notable photothermal properties upon exposure to near-infrared radiation. This induces the cleavage of ZIF-8, facilitating the release of At10, which effectively targets bacterial membranes to exert its antibacterial effects. Bacteria treated with At10/CuS@ZIF-8 under light radiation exhibited not only membrane folding and intracellular matrix outflow but also bacterial fracture. This synergistic antibacterial strategy, integrating the unique properties of AMPs, CuS NPs, and pH responsiveness of ZIF-8, holds promising potential for widespread application in the treatment of bacterial infections.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114516"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic bactericidal effect of antimicrobial peptides and copper sulfide-loaded zeolitic imidazolate framework-8 nanoparticles with photothermal therapy\",\"authors\":\"Duoduo Zhang , Shiyue Bie , Mhd Anas Tomeh , Xinyu Zhang , Xiubo Zhao\",\"doi\":\"10.1016/j.ejpb.2024.114516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimicrobial resistance (AMR) has emerged as a significant threat to human health. Antimicrobial peptides (AMPs) have proven to be an effective strategy against antibiotic-resistant bacteria, given their capacity to swiftly disrupt microorganism membranes and alter cell morphology. A common limitation, however, lies in the inherent toxicity of many AMPs and their vulnerability to protease degradation within the body. Photothermal therapy (PTT) stands out as a widely utilized approach in combating antibiotic-resistant bacterial infections, boasting high efficiency and non-invasive benefits. To enhance the stability and antibacterial efficacy of AMPs, a novel approach involving the combination of AMPs and PTT has been proposed. This study focuses on the encapsulation of At10 (an AMP designed by our group), and copper sulfide nanoparticles (CuS NPs) within zeolitic imidazolate framework-8 (ZIF-8) to form nanocomposites (At10/CuS@ZIF-8). The encapsulated CuS NPs exhibit notable photothermal properties upon exposure to near-infrared radiation. This induces the cleavage of ZIF-8, facilitating the release of At10, which effectively targets bacterial membranes to exert its antibacterial effects. Bacteria treated with At10/CuS@ZIF-8 under light radiation exhibited not only membrane folding and intracellular matrix outflow but also bacterial fracture. This synergistic antibacterial strategy, integrating the unique properties of AMPs, CuS NPs, and pH responsiveness of ZIF-8, holds promising potential for widespread application in the treatment of bacterial infections.</div></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"204 \",\"pages\":\"Article 114516\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003424\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003424","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Synergistic bactericidal effect of antimicrobial peptides and copper sulfide-loaded zeolitic imidazolate framework-8 nanoparticles with photothermal therapy
Antimicrobial resistance (AMR) has emerged as a significant threat to human health. Antimicrobial peptides (AMPs) have proven to be an effective strategy against antibiotic-resistant bacteria, given their capacity to swiftly disrupt microorganism membranes and alter cell morphology. A common limitation, however, lies in the inherent toxicity of many AMPs and their vulnerability to protease degradation within the body. Photothermal therapy (PTT) stands out as a widely utilized approach in combating antibiotic-resistant bacterial infections, boasting high efficiency and non-invasive benefits. To enhance the stability and antibacterial efficacy of AMPs, a novel approach involving the combination of AMPs and PTT has been proposed. This study focuses on the encapsulation of At10 (an AMP designed by our group), and copper sulfide nanoparticles (CuS NPs) within zeolitic imidazolate framework-8 (ZIF-8) to form nanocomposites (At10/CuS@ZIF-8). The encapsulated CuS NPs exhibit notable photothermal properties upon exposure to near-infrared radiation. This induces the cleavage of ZIF-8, facilitating the release of At10, which effectively targets bacterial membranes to exert its antibacterial effects. Bacteria treated with At10/CuS@ZIF-8 under light radiation exhibited not only membrane folding and intracellular matrix outflow but also bacterial fracture. This synergistic antibacterial strategy, integrating the unique properties of AMPs, CuS NPs, and pH responsiveness of ZIF-8, holds promising potential for widespread application in the treatment of bacterial infections.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.