Giovanni Veronesi, Sara De Matteis, Camillo Silibello, Emanuele M Giusti, Walter Ageno, Marco M Ferrario
{"title":"长期暴露于空气污染物对 SARS-CoV-2 感染和严重程度的交互影响:一项基于意大利北部人群的队列研究。","authors":"Giovanni Veronesi, Sara De Matteis, Camillo Silibello, Emanuele M Giusti, Walter Ageno, Marco M Ferrario","doi":"10.1097/EDE.0000000000001792","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We examined interactions, to our knowledge not yet explored, between long-term exposures to particulate matter (PM 10 ) with nitrogen dioxide (NO 2 ) and ozone (O 3 ) on SARS-CoV-2 infectivity and severity.</p><p><strong>Methods: </strong>We followed 709,864 adult residents of Varese Province from 1 February 2020 until the first positive test, COVID-19 hospitalization, or death, up to 31 December 2020. We estimated residential annual means of PM 10 , NO 2 and O 3 in 2019 from chemical-transport and random-forest models. We estimated interactive effects of pollutants with urbanicity on SARS-CoV-2 infectivity, hospitalization, and mortality endpoints using Cox regression models adjusted for socio-demographic factors and comorbidities, and additional cases due to interactions using Poisson models.</p><p><strong>Results: </strong>41,065 individuals were infected, 5,203 were hospitalized and 1,543 died from COVID-19 during follow-up. Mean PM 10 was 1.6 times higher and NO 2 2.6 times higher than WHO limits, with wide gradients between urban and non-urban areas. PM 10 and NO 2 were positively associated with SARS-CoV-2 infectivity and mortality, and PM 10 with hospitalizations in urban areas. Interaction analyses estimated that the effect of PM 10 (per 3.5 µg/m 3 ) on infectivity was strongest in urban areas (HR=1.12, 95%CI:1.09-1.16), corresponding to 854 additional cases per 100,000 person-years, and in areas at high NO 2 co-exposure (HR=1.15, 1.08-1.22). At higher levels of PM 10 co-exposure the protective association of ozone reversed (HR=1.32, 1.17-1.49), yielding to 278 additional cases per µg/m 3 increase in O 3 . We estimated similar interactive effects for severity endpoints.</p><p><strong>Conclusions: </strong>We estimate that interactive effects between pollutants exacerbated the burden of SARS-CoV-2 pandemic in urban areas.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive effects of long-term exposure to air pollutants on SARS-CoV-2 infection and severity: a northern Italian population-based cohort study.\",\"authors\":\"Giovanni Veronesi, Sara De Matteis, Camillo Silibello, Emanuele M Giusti, Walter Ageno, Marco M Ferrario\",\"doi\":\"10.1097/EDE.0000000000001792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We examined interactions, to our knowledge not yet explored, between long-term exposures to particulate matter (PM 10 ) with nitrogen dioxide (NO 2 ) and ozone (O 3 ) on SARS-CoV-2 infectivity and severity.</p><p><strong>Methods: </strong>We followed 709,864 adult residents of Varese Province from 1 February 2020 until the first positive test, COVID-19 hospitalization, or death, up to 31 December 2020. We estimated residential annual means of PM 10 , NO 2 and O 3 in 2019 from chemical-transport and random-forest models. We estimated interactive effects of pollutants with urbanicity on SARS-CoV-2 infectivity, hospitalization, and mortality endpoints using Cox regression models adjusted for socio-demographic factors and comorbidities, and additional cases due to interactions using Poisson models.</p><p><strong>Results: </strong>41,065 individuals were infected, 5,203 were hospitalized and 1,543 died from COVID-19 during follow-up. Mean PM 10 was 1.6 times higher and NO 2 2.6 times higher than WHO limits, with wide gradients between urban and non-urban areas. PM 10 and NO 2 were positively associated with SARS-CoV-2 infectivity and mortality, and PM 10 with hospitalizations in urban areas. Interaction analyses estimated that the effect of PM 10 (per 3.5 µg/m 3 ) on infectivity was strongest in urban areas (HR=1.12, 95%CI:1.09-1.16), corresponding to 854 additional cases per 100,000 person-years, and in areas at high NO 2 co-exposure (HR=1.15, 1.08-1.22). At higher levels of PM 10 co-exposure the protective association of ozone reversed (HR=1.32, 1.17-1.49), yielding to 278 additional cases per µg/m 3 increase in O 3 . We estimated similar interactive effects for severity endpoints.</p><p><strong>Conclusions: </strong>We estimate that interactive effects between pollutants exacerbated the burden of SARS-CoV-2 pandemic in urban areas.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001792\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Interactive effects of long-term exposure to air pollutants on SARS-CoV-2 infection and severity: a northern Italian population-based cohort study.
Background: We examined interactions, to our knowledge not yet explored, between long-term exposures to particulate matter (PM 10 ) with nitrogen dioxide (NO 2 ) and ozone (O 3 ) on SARS-CoV-2 infectivity and severity.
Methods: We followed 709,864 adult residents of Varese Province from 1 February 2020 until the first positive test, COVID-19 hospitalization, or death, up to 31 December 2020. We estimated residential annual means of PM 10 , NO 2 and O 3 in 2019 from chemical-transport and random-forest models. We estimated interactive effects of pollutants with urbanicity on SARS-CoV-2 infectivity, hospitalization, and mortality endpoints using Cox regression models adjusted for socio-demographic factors and comorbidities, and additional cases due to interactions using Poisson models.
Results: 41,065 individuals were infected, 5,203 were hospitalized and 1,543 died from COVID-19 during follow-up. Mean PM 10 was 1.6 times higher and NO 2 2.6 times higher than WHO limits, with wide gradients between urban and non-urban areas. PM 10 and NO 2 were positively associated with SARS-CoV-2 infectivity and mortality, and PM 10 with hospitalizations in urban areas. Interaction analyses estimated that the effect of PM 10 (per 3.5 µg/m 3 ) on infectivity was strongest in urban areas (HR=1.12, 95%CI:1.09-1.16), corresponding to 854 additional cases per 100,000 person-years, and in areas at high NO 2 co-exposure (HR=1.15, 1.08-1.22). At higher levels of PM 10 co-exposure the protective association of ozone reversed (HR=1.32, 1.17-1.49), yielding to 278 additional cases per µg/m 3 increase in O 3 . We estimated similar interactive effects for severity endpoints.
Conclusions: We estimate that interactive effects between pollutants exacerbated the burden of SARS-CoV-2 pandemic in urban areas.
期刊介绍:
Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.