瞬态 GI/MSP/1/N 队列。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-09-22 DOI:10.3390/e26090807
Andrzej Chydzinski
{"title":"瞬态 GI/MSP/1/N 队列。","authors":"Andrzej Chydzinski","doi":"10.3390/e26090807","DOIUrl":null,"url":null,"abstract":"<p><p>A non-zero correlation between service times can be encountered in many real queueing systems. An attractive model for correlated service times is the Markovian service process, because it offers powerful fitting capabilities combined with analytical tractability. In this paper, a transient study of the queue length in a model with MSP services and a general distribution of interarrival times is performed. In particular, two theorems are proven: one on the queue length distribution at a particular time <i>t</i>, where <i>t</i> can be arbitrarily small or large, and another on the mean queue length at <i>t</i>. In addition to the theorems, multiple numerical examples are provided. They illustrate the development over time of the mean queue length and the standard deviation, along with the complete distribution, depending on the service correlation strength, initial system conditions, and the interarrival time variance.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431701/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transient GI/MSP/1/N Queue.\",\"authors\":\"Andrzej Chydzinski\",\"doi\":\"10.3390/e26090807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A non-zero correlation between service times can be encountered in many real queueing systems. An attractive model for correlated service times is the Markovian service process, because it offers powerful fitting capabilities combined with analytical tractability. In this paper, a transient study of the queue length in a model with MSP services and a general distribution of interarrival times is performed. In particular, two theorems are proven: one on the queue length distribution at a particular time <i>t</i>, where <i>t</i> can be arbitrarily small or large, and another on the mean queue length at <i>t</i>. In addition to the theorems, multiple numerical examples are provided. They illustrate the development over time of the mean queue length and the standard deviation, along with the complete distribution, depending on the service correlation strength, initial system conditions, and the interarrival time variance.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26090807\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26090807","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在许多实际排队系统中,服务时间之间可能存在非零相关性。马尔可夫服务过程是一个很有吸引力的相关服务时间模型,因为它具有强大的拟合能力和可分析性。本文对具有马尔可夫服务过程和一般到达时间分布的模型中的队列长度进行了瞬态研究。本文特别证明了两个定理:一个是特定时间 t(t 可以任意小或大)的队列长度分布定理,另一个是 t 时的平均队列长度定理。它们说明了队列平均长度和标准偏差以及完整分布随时间的变化,这取决于服务相关强度、初始系统条件和到达时间方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient GI/MSP/1/N Queue.

A non-zero correlation between service times can be encountered in many real queueing systems. An attractive model for correlated service times is the Markovian service process, because it offers powerful fitting capabilities combined with analytical tractability. In this paper, a transient study of the queue length in a model with MSP services and a general distribution of interarrival times is performed. In particular, two theorems are proven: one on the queue length distribution at a particular time t, where t can be arbitrarily small or large, and another on the mean queue length at t. In addition to the theorems, multiple numerical examples are provided. They illustrate the development over time of the mean queue length and the standard deviation, along with the complete distribution, depending on the service correlation strength, initial system conditions, and the interarrival time variance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信