用于近似柯尔莫哥洛夫前缀复杂性的加法最优解释器

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-09-20 DOI:10.3390/e26090802
Zoe Leyva-Acosta, Eduardo Acuña Yeomans, Francisco Hernandez-Quiroz
{"title":"用于近似柯尔莫哥洛夫前缀复杂性的加法最优解释器","authors":"Zoe Leyva-Acosta, Eduardo Acuña Yeomans, Francisco Hernandez-Quiroz","doi":"10.3390/e26090802","DOIUrl":null,"url":null,"abstract":"<p><p>We study practical approximations of Kolmogorov prefix complexity (<i>K</i>) using IMP2, a high-level programming language. Our focus is on investigating the optimality of the interpreter for this language as the reference machine for the Coding Theorem Method (CTM). This method is designed to address applications of algorithmic complexity that differ from the popular traditional lossless compression approach based on the principles of algorithmic probability. The chosen model of computation is proven to be suitable for this task, and a comparison to other models and methods is conducted. Our findings show that CTM approximations using our model do not always correlate with the results from lower-level models of computation. This suggests that some models may require a larger program space to converge to Levin's universal distribution. Furthermore, we compare the CTM with an upper bound on Kolmogorov complexity and find a strong correlation, supporting the CTM's validity as an approximation method with finer-grade resolution of <i>K</i>.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431414/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Additively Optimal Interpreter for Approximating Kolmogorov Prefix Complexity.\",\"authors\":\"Zoe Leyva-Acosta, Eduardo Acuña Yeomans, Francisco Hernandez-Quiroz\",\"doi\":\"10.3390/e26090802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study practical approximations of Kolmogorov prefix complexity (<i>K</i>) using IMP2, a high-level programming language. Our focus is on investigating the optimality of the interpreter for this language as the reference machine for the Coding Theorem Method (CTM). This method is designed to address applications of algorithmic complexity that differ from the popular traditional lossless compression approach based on the principles of algorithmic probability. The chosen model of computation is proven to be suitable for this task, and a comparison to other models and methods is conducted. Our findings show that CTM approximations using our model do not always correlate with the results from lower-level models of computation. This suggests that some models may require a larger program space to converge to Levin's universal distribution. Furthermore, we compare the CTM with an upper bound on Kolmogorov complexity and find a strong correlation, supporting the CTM's validity as an approximation method with finer-grade resolution of <i>K</i>.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26090802\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26090802","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们使用高级编程语言 IMP2 研究了柯尔莫哥洛夫前缀复杂度 (K) 的实用近似值。我们的重点是研究这种语言的解释器作为编码定理方法(CTM)参考机器的最优性。该方法旨在解决算法复杂性的应用问题,不同于基于算法概率原理的流行的传统无损压缩方法。所选的计算模型已被证明适用于这项任务,并与其他模型和方法进行了比较。我们的研究结果表明,使用我们的模型得出的 CTM 近似值并不总是与低级计算模型的结果相关联。这表明,某些模型可能需要更大的程序空间才能收敛到列文的普遍分布。此外,我们还将 CTM 与科尔莫哥罗夫复杂度的上限进行了比较,发现两者之间存在很强的相关性,这支持了 CTM 作为一种近似方法的有效性,它可以对 K 进行更精细的解析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Additively Optimal Interpreter for Approximating Kolmogorov Prefix Complexity.

We study practical approximations of Kolmogorov prefix complexity (K) using IMP2, a high-level programming language. Our focus is on investigating the optimality of the interpreter for this language as the reference machine for the Coding Theorem Method (CTM). This method is designed to address applications of algorithmic complexity that differ from the popular traditional lossless compression approach based on the principles of algorithmic probability. The chosen model of computation is proven to be suitable for this task, and a comparison to other models and methods is conducted. Our findings show that CTM approximations using our model do not always correlate with the results from lower-level models of computation. This suggests that some models may require a larger program space to converge to Levin's universal distribution. Furthermore, we compare the CTM with an upper bound on Kolmogorov complexity and find a strong correlation, supporting the CTM's validity as an approximation method with finer-grade resolution of K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信