Hiu Ching Phang, Zhi Qi Ng, Najwa Mohamad, Yik Ling Chew, Ashok Balaraman, Phei Er Kee, Kenji Mishima, Bey Hing Goh, Long Chiau Ming, Kai Bin Liew
{"title":"比较烘箱干燥法和冷冻干燥法生产含富马酸喹硫平的快速熔融薄膜。","authors":"Hiu Ching Phang, Zhi Qi Ng, Najwa Mohamad, Yik Ling Chew, Ashok Balaraman, Phei Er Kee, Kenji Mishima, Bey Hing Goh, Long Chiau Ming, Kai Bin Liew","doi":"10.1080/03639045.2024.2409168","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset.</p><p><strong>Objective: </strong>This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films.</p><p><strong>Methods: </strong>Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability.</p><p><strong>Results: </strong>FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214).</p><p><strong>Conclusion: </strong>Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of oven drying and freeze drying methods for the production of fast melt films containing quetiapine fumarate.\",\"authors\":\"Hiu Ching Phang, Zhi Qi Ng, Najwa Mohamad, Yik Ling Chew, Ashok Balaraman, Phei Er Kee, Kenji Mishima, Bey Hing Goh, Long Chiau Ming, Kai Bin Liew\",\"doi\":\"10.1080/03639045.2024.2409168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset.</p><p><strong>Objective: </strong>This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films.</p><p><strong>Methods: </strong>Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability.</p><p><strong>Results: </strong>FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214).</p><p><strong>Conclusion: </strong>Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03639045.2024.2409168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2409168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comparison of oven drying and freeze drying methods for the production of fast melt films containing quetiapine fumarate.
Background: Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset.
Objective: This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films.
Methods: Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability.
Results: FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214).
Conclusion: Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.