Mohammad Javad Sotoudeheian, Reza Azarbad, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Mohammad Moradi, Hamidreza Pazoki-Toroudi
{"title":"针对SARS-CoV-2诱导的心血管损伤:探索 Ponatinib 在 COVID-19 中减轻心血管坏死的潜力。","authors":"Mohammad Javad Sotoudeheian, Reza Azarbad, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Mohammad Moradi, Hamidreza Pazoki-Toroudi","doi":"10.2174/0113892010324744240916110446","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of Coronavirus Disease 2019 (COVID-19) has increased dramatically in recent years, affecting millions of people worldwide. The primary cause of morbidity and mortality in COVID-19 patients is respiratory illness. However, the disease can also significantly impact the cardiovascular system. SARS-CoV-2, the virus responsible for COVID-19, enters cells using the angiotensin-converting enzyme 2 (ACE-2) receptor. ACE-2 is a component of the renin-angiotensin system (RAS) and plays a crucial role in regulating various pathological processes. The interaction of the virus with ACE-2 in the myocardium can lead to direct heart damage. Several mechanisms may contribute to myocardial damage in COVID-19 patients, including systemic inflammation, myocardial interstitial fibrosis, interferon-mediated immune response, exaggerated cytokine response, T-cell-mediated damage, coronary plaque instability, and hypoxia. There has been concern that ACE inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) may increase vulnerability to SARS-CoV-2 by upregulating ACE-2 expression. However, it may be advisable to continue medications for patients with underlying cardiovascular disorders. The precise mechanisms of cardiomyocyte injury in COVID-19 are not fully understood, but necroptosis appears to play a significant role. Current treatments for cardiac damage in COVID-19 patients include IL-6 blockers and antiplatelet therapy. Ponatinib, a small molecule tyrosine kinase inhibitor designed using computational and structural approaches, has shown the potential to affect cell death through its impact on tyrosine kinase activity. By reviewing studies related to ponatinib's effects on necroptosis and cell death, we propose a novel approach to potentially reduce the cardiotoxic effects of COVID-19 on cardiomyocytes. Further research is needed to fully elucidate the mechanisms of cardiac injury in COVID-19 and to develop targeted therapies to protect the heart from the devastating effects of this disease.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting SARS-CoV-2-Induced Cardiovascular Injury: Exploring the Potential of Ponatinib in Mitigating Cardiovascular Necroptosis in COVID-19.\",\"authors\":\"Mohammad Javad Sotoudeheian, Reza Azarbad, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Mohammad Moradi, Hamidreza Pazoki-Toroudi\",\"doi\":\"10.2174/0113892010324744240916110446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incidence of Coronavirus Disease 2019 (COVID-19) has increased dramatically in recent years, affecting millions of people worldwide. The primary cause of morbidity and mortality in COVID-19 patients is respiratory illness. However, the disease can also significantly impact the cardiovascular system. SARS-CoV-2, the virus responsible for COVID-19, enters cells using the angiotensin-converting enzyme 2 (ACE-2) receptor. ACE-2 is a component of the renin-angiotensin system (RAS) and plays a crucial role in regulating various pathological processes. The interaction of the virus with ACE-2 in the myocardium can lead to direct heart damage. Several mechanisms may contribute to myocardial damage in COVID-19 patients, including systemic inflammation, myocardial interstitial fibrosis, interferon-mediated immune response, exaggerated cytokine response, T-cell-mediated damage, coronary plaque instability, and hypoxia. There has been concern that ACE inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) may increase vulnerability to SARS-CoV-2 by upregulating ACE-2 expression. However, it may be advisable to continue medications for patients with underlying cardiovascular disorders. The precise mechanisms of cardiomyocyte injury in COVID-19 are not fully understood, but necroptosis appears to play a significant role. Current treatments for cardiac damage in COVID-19 patients include IL-6 blockers and antiplatelet therapy. Ponatinib, a small molecule tyrosine kinase inhibitor designed using computational and structural approaches, has shown the potential to affect cell death through its impact on tyrosine kinase activity. By reviewing studies related to ponatinib's effects on necroptosis and cell death, we propose a novel approach to potentially reduce the cardiotoxic effects of COVID-19 on cardiomyocytes. Further research is needed to fully elucidate the mechanisms of cardiac injury in COVID-19 and to develop targeted therapies to protect the heart from the devastating effects of this disease.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010324744240916110446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010324744240916110446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting SARS-CoV-2-Induced Cardiovascular Injury: Exploring the Potential of Ponatinib in Mitigating Cardiovascular Necroptosis in COVID-19.
The incidence of Coronavirus Disease 2019 (COVID-19) has increased dramatically in recent years, affecting millions of people worldwide. The primary cause of morbidity and mortality in COVID-19 patients is respiratory illness. However, the disease can also significantly impact the cardiovascular system. SARS-CoV-2, the virus responsible for COVID-19, enters cells using the angiotensin-converting enzyme 2 (ACE-2) receptor. ACE-2 is a component of the renin-angiotensin system (RAS) and plays a crucial role in regulating various pathological processes. The interaction of the virus with ACE-2 in the myocardium can lead to direct heart damage. Several mechanisms may contribute to myocardial damage in COVID-19 patients, including systemic inflammation, myocardial interstitial fibrosis, interferon-mediated immune response, exaggerated cytokine response, T-cell-mediated damage, coronary plaque instability, and hypoxia. There has been concern that ACE inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) may increase vulnerability to SARS-CoV-2 by upregulating ACE-2 expression. However, it may be advisable to continue medications for patients with underlying cardiovascular disorders. The precise mechanisms of cardiomyocyte injury in COVID-19 are not fully understood, but necroptosis appears to play a significant role. Current treatments for cardiac damage in COVID-19 patients include IL-6 blockers and antiplatelet therapy. Ponatinib, a small molecule tyrosine kinase inhibitor designed using computational and structural approaches, has shown the potential to affect cell death through its impact on tyrosine kinase activity. By reviewing studies related to ponatinib's effects on necroptosis and cell death, we propose a novel approach to potentially reduce the cardiotoxic effects of COVID-19 on cardiomyocytes. Further research is needed to fully elucidate the mechanisms of cardiac injury in COVID-19 and to develop targeted therapies to protect the heart from the devastating effects of this disease.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.