2 型糖尿病的菌群失调和肠道微生物群的调节。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Minakshi, Hemlata Kumari, Shaurya Prakash, Antresh Kumar
{"title":"2 型糖尿病的菌群失调和肠道微生物群的调节。","authors":"Minakshi, Hemlata Kumari, Shaurya Prakash, Antresh Kumar","doi":"10.2174/0113892010318580240910061534","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus is a serious metabolic disease having a high growth rate and becoming a global threat. An unhealthy lifestyle, food intake, and genetic susceptibility are the major factors responsible for this metabolic disorder. This disease results in hyperlipidemia, hyperglycemia, glucose intolerance, restricted insulin synthesis, and insulin resistance. Despite a variety of treatments currently available, cases of diabetes and resulting complications are on the rise. One promising approach to diabetes focuses on gut microflora and their associated metabolites. Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology. This study explores the dysbiosis in the human gut microflora in Type 2 Diabetes Mellitus and how the gut microbiota influences metabolites related to T2DM. It also sheds light on early identification and targeted intervention for this. Understanding these mechanisms could potentially lead to more effective strategies for managing and preventing T2DM. The findings of our literature study are that gut microbiota can serve as biomarkers for early disease detection. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to emphasize the improvement of T2DM progression.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysbiosis and Regulation of Gut Microbiota in Type 2 Diabetes Mellitus.\",\"authors\":\"Minakshi, Hemlata Kumari, Shaurya Prakash, Antresh Kumar\",\"doi\":\"10.2174/0113892010318580240910061534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes mellitus is a serious metabolic disease having a high growth rate and becoming a global threat. An unhealthy lifestyle, food intake, and genetic susceptibility are the major factors responsible for this metabolic disorder. This disease results in hyperlipidemia, hyperglycemia, glucose intolerance, restricted insulin synthesis, and insulin resistance. Despite a variety of treatments currently available, cases of diabetes and resulting complications are on the rise. One promising approach to diabetes focuses on gut microflora and their associated metabolites. Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology. This study explores the dysbiosis in the human gut microflora in Type 2 Diabetes Mellitus and how the gut microbiota influences metabolites related to T2DM. It also sheds light on early identification and targeted intervention for this. Understanding these mechanisms could potentially lead to more effective strategies for managing and preventing T2DM. The findings of our literature study are that gut microbiota can serve as biomarkers for early disease detection. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to emphasize the improvement of T2DM progression.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010318580240910061534\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010318580240910061534","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2 型糖尿病是一种严重的代谢性疾病,发病率高,已成为全球性威胁。不健康的生活方式、食物摄入量和遗传易感性是导致这种代谢紊乱的主要因素。这种疾病会导致高脂血症、高血糖、葡萄糖不耐受、胰岛素合成受限和胰岛素抵抗。尽管目前有多种治疗方法,但糖尿病病例及其并发症仍呈上升趋势。一种治疗糖尿病的有效方法是研究肠道微生物菌群及其相关代谢物。由于肠道微生物群在疾病病理生理学中的关键作用,它已引起广泛关注。本研究探讨了 2 型糖尿病患者肠道微生物菌群失调的情况,以及肠道微生物菌群如何影响与 T2DM 相关的代谢物。研究还揭示了早期识别和针对性干预的方法。了解这些机制有可能为管理和预防 T2DM 制定更有效的策略。我们的文献研究发现,肠道微生物群可作为早期疾病检测的生物标志物。最后,我们还强调了以塑造肠道菌群为重点的肠道微生态治疗策略,以强调改善 T2DM 的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dysbiosis and Regulation of Gut Microbiota in Type 2 Diabetes Mellitus.

Type 2 diabetes mellitus is a serious metabolic disease having a high growth rate and becoming a global threat. An unhealthy lifestyle, food intake, and genetic susceptibility are the major factors responsible for this metabolic disorder. This disease results in hyperlipidemia, hyperglycemia, glucose intolerance, restricted insulin synthesis, and insulin resistance. Despite a variety of treatments currently available, cases of diabetes and resulting complications are on the rise. One promising approach to diabetes focuses on gut microflora and their associated metabolites. Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology. This study explores the dysbiosis in the human gut microflora in Type 2 Diabetes Mellitus and how the gut microbiota influences metabolites related to T2DM. It also sheds light on early identification and targeted intervention for this. Understanding these mechanisms could potentially lead to more effective strategies for managing and preventing T2DM. The findings of our literature study are that gut microbiota can serve as biomarkers for early disease detection. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to emphasize the improvement of T2DM progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信