离焦复变修正 KdV 方程的破波、色散冲击波和相移。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ya-Hui Huang, Rui Guo
{"title":"离焦复变修正 KdV 方程的破波、色散冲击波和相移。","authors":"Ya-Hui Huang, Rui Guo","doi":"10.1063/5.0231741","DOIUrl":null,"url":null,"abstract":"<p><p>We study the problem of wave breaking for a simple wave propagating to a quiescent medium in the framework of the defocusing complex modified KdV (cmKdV) equation. It is assumed that a cubic root singularity is formed at the wave-breaking point. The dispersive regularization of wave breaking leads to the generation of a dispersive shock wave (DSW). We describe the DSW as a modulated periodic wave in the framework of the Gurevich-Pitaevskii approach based on the Whitham modulation theory. The generalized hodograph method is used to solve the Whitham equations, and the boundaries of the DSW are found. Most importantly, we determine the correct phase shift for the DSW from the generalized phase relationships and the modified Gurevich-Pitaevskii matching conditions, so that a complete description of the DSW is obtained rather than just its envelope. All of our analytical predictions agree well with the numerical simulations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave breaking, dispersive shock wave, and phase shift for the defocusing complex modified KdV equation.\",\"authors\":\"Ya-Hui Huang, Rui Guo\",\"doi\":\"10.1063/5.0231741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the problem of wave breaking for a simple wave propagating to a quiescent medium in the framework of the defocusing complex modified KdV (cmKdV) equation. It is assumed that a cubic root singularity is formed at the wave-breaking point. The dispersive regularization of wave breaking leads to the generation of a dispersive shock wave (DSW). We describe the DSW as a modulated periodic wave in the framework of the Gurevich-Pitaevskii approach based on the Whitham modulation theory. The generalized hodograph method is used to solve the Whitham equations, and the boundaries of the DSW are found. Most importantly, we determine the correct phase shift for the DSW from the generalized phase relationships and the modified Gurevich-Pitaevskii matching conditions, so that a complete description of the DSW is obtained rather than just its envelope. All of our analytical predictions agree well with the numerical simulations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0231741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们在离焦复修正 KdV(cmKdV)方程的框架内研究了向静态介质传播的简单波的破波问题。假定在破波点形成立方根奇点。破波的色散正则化导致色散冲击波(DSW)的产生。我们在基于 Whitham 调制理论的 Gurevich-Pitaevskii 方法框架内,将频散冲击波描述为调制周期波。我们使用广义霍德图法来求解惠瑟姆方程,并找到了 DSW 的边界。最重要的是,我们根据广义相位关系和修改后的古列维奇-皮塔耶夫斯基匹配条件确定了 DSW 的正确相移,从而获得了 DSW 的完整描述,而不仅仅是其包络线。我们的所有分析预测都与数值模拟结果吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave breaking, dispersive shock wave, and phase shift for the defocusing complex modified KdV equation.

We study the problem of wave breaking for a simple wave propagating to a quiescent medium in the framework of the defocusing complex modified KdV (cmKdV) equation. It is assumed that a cubic root singularity is formed at the wave-breaking point. The dispersive regularization of wave breaking leads to the generation of a dispersive shock wave (DSW). We describe the DSW as a modulated periodic wave in the framework of the Gurevich-Pitaevskii approach based on the Whitham modulation theory. The generalized hodograph method is used to solve the Whitham equations, and the boundaries of the DSW are found. Most importantly, we determine the correct phase shift for the DSW from the generalized phase relationships and the modified Gurevich-Pitaevskii matching conditions, so that a complete description of the DSW is obtained rather than just its envelope. All of our analytical predictions agree well with the numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信