通过分岔分析研究光敏贝洛索夫-扎博金斯基凝胶的非线性动力学。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Vandana Rajput, Pratyush Dayal
{"title":"通过分岔分析研究光敏贝洛索夫-扎博金斯基凝胶的非线性动力学。","authors":"Vandana Rajput, Pratyush Dayal","doi":"10.1063/5.0211349","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the dynamics of active stimuli-responsive smart materials is essential to replicate the biomimetic functionalities at different length scales for a variety of biological systems-based applications. Photosensitive Belousov-Zhabotinsky (BZ) gels, powered by a nonlinear chemical oscillator, called a BZ reaction are one of the stimuli-responsive smart materials in demand due to their ability to continuously transduce chemical oscillations into mechanical deformations. The chemical oscillations in a BZ reaction and subsequent mechanical oscillations in photosensitive BZ gels occur due to the redox cycle of photosensitive ruthenium complex-based catalysts. In this work, our objective is to identify how the behavior of photosensitive BZ gels can be tuned and used for biomimetic applications by investigating its dynamical characteristics using bifurcation analyses. Specifically, we use the normal form approach and perform linear and nonlinear stability analyses to identify high-order bifurcations by computing higher-order Lyapunov and frequency coefficients. We revealed the existence of domains that encompass coexisting stable and unstable limit cycles (LCs), which merge to form a semi-stable LC at the limit point of cycle (LPC). Their existence shows how a slight variation in the BZ gel recipe can significantly alter its dynamics. Subsequently, we quantify the amplitude and frequency of oscillations in different domains under the effect of variation of BZ reaction formulations. We believe that the outcomes of our work serve as an efficient template for the design and control of BZ gel-based applications. The usage of a normal form and a systematic representation of nonlinear dynamics allow our framework to be extended for other nonlinear dynamical systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the nonlinear dynamics of photosensitive Belousov-Zhabotinsky gels via bifurcation analyses.\",\"authors\":\"Vandana Rajput, Pratyush Dayal\",\"doi\":\"10.1063/5.0211349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Controlling the dynamics of active stimuli-responsive smart materials is essential to replicate the biomimetic functionalities at different length scales for a variety of biological systems-based applications. Photosensitive Belousov-Zhabotinsky (BZ) gels, powered by a nonlinear chemical oscillator, called a BZ reaction are one of the stimuli-responsive smart materials in demand due to their ability to continuously transduce chemical oscillations into mechanical deformations. The chemical oscillations in a BZ reaction and subsequent mechanical oscillations in photosensitive BZ gels occur due to the redox cycle of photosensitive ruthenium complex-based catalysts. In this work, our objective is to identify how the behavior of photosensitive BZ gels can be tuned and used for biomimetic applications by investigating its dynamical characteristics using bifurcation analyses. Specifically, we use the normal form approach and perform linear and nonlinear stability analyses to identify high-order bifurcations by computing higher-order Lyapunov and frequency coefficients. We revealed the existence of domains that encompass coexisting stable and unstable limit cycles (LCs), which merge to form a semi-stable LC at the limit point of cycle (LPC). Their existence shows how a slight variation in the BZ gel recipe can significantly alter its dynamics. Subsequently, we quantify the amplitude and frequency of oscillations in different domains under the effect of variation of BZ reaction formulations. We believe that the outcomes of our work serve as an efficient template for the design and control of BZ gel-based applications. The usage of a normal form and a systematic representation of nonlinear dynamics allow our framework to be extended for other nonlinear dynamical systems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0211349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0211349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

控制活性刺激响应型智能材料的动态,对于在不同长度尺度上复制生物仿生功能以用于各种基于生物系统的应用至关重要。由非线性化学振荡器(称为 BZ 反应)驱动的光敏别洛乌索夫-扎博金斯基(BZ)凝胶是刺激响应型智能材料之一,由于其能够将化学振荡持续转化为机械变形,因而备受青睐。BZ 反应中的化学振荡和随后光敏 BZ 凝胶中的机械振荡是由于基于光敏钌络合物的催化剂的氧化还原循环而产生的。在这项研究中,我们的目标是利用分岔分析研究光敏 BZ 凝胶的动态特性,从而确定如何调整其行为并将其用于生物仿生应用。具体来说,我们使用正态方法并进行线性和非线性稳定性分析,通过计算高阶 Lyapunov 和频率系数来识别高阶分岔。我们揭示了包含稳定和不稳定极限循环(LC)并存的域的存在,这些循环在循环极限点(LPC)处合并形成半稳定极限循环。它们的存在表明,BZ 凝胶配方中的细微变化可显著改变其动态。随后,我们量化了在 BZ 反应配方变化的影响下不同域的振荡幅度和频率。我们相信,我们的工作成果可以作为设计和控制基于 BZ 凝胶的应用的有效模板。正态形式的使用和非线性动力学的系统表示使我们的框架可以扩展到其他非线性动力学系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the nonlinear dynamics of photosensitive Belousov-Zhabotinsky gels via bifurcation analyses.

Controlling the dynamics of active stimuli-responsive smart materials is essential to replicate the biomimetic functionalities at different length scales for a variety of biological systems-based applications. Photosensitive Belousov-Zhabotinsky (BZ) gels, powered by a nonlinear chemical oscillator, called a BZ reaction are one of the stimuli-responsive smart materials in demand due to their ability to continuously transduce chemical oscillations into mechanical deformations. The chemical oscillations in a BZ reaction and subsequent mechanical oscillations in photosensitive BZ gels occur due to the redox cycle of photosensitive ruthenium complex-based catalysts. In this work, our objective is to identify how the behavior of photosensitive BZ gels can be tuned and used for biomimetic applications by investigating its dynamical characteristics using bifurcation analyses. Specifically, we use the normal form approach and perform linear and nonlinear stability analyses to identify high-order bifurcations by computing higher-order Lyapunov and frequency coefficients. We revealed the existence of domains that encompass coexisting stable and unstable limit cycles (LCs), which merge to form a semi-stable LC at the limit point of cycle (LPC). Their existence shows how a slight variation in the BZ gel recipe can significantly alter its dynamics. Subsequently, we quantify the amplitude and frequency of oscillations in different domains under the effect of variation of BZ reaction formulations. We believe that the outcomes of our work serve as an efficient template for the design and control of BZ gel-based applications. The usage of a normal form and a systematic representation of nonlinear dynamics allow our framework to be extended for other nonlinear dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信