Xin Wang, Han Liu, Yuan Wang, Yanli Lin, Kuikui Ni, Fuyu Yang
{"title":"乳酸菌和纤维素酶添加剂对燕麦青贮发酵质量、抗氧化活性和代谢概况的影响","authors":"Xin Wang, Han Liu, Yuan Wang, Yanli Lin, Kuikui Ni, Fuyu Yang","doi":"10.1186/s40643-024-00806-z","DOIUrl":null,"url":null,"abstract":"<p><p>Oats (Avena sativa L.) are rich in nutrients and bioactive compounds, serving as a roughage source for ruminants. This study investigated the impact of lactic acid bacteria (LAB), cellulase (M), and their combinations (LM) on the fermentation quality and metabolic compounds of oat silage. Results demonstrated that all additive treatments significantly increased lactic acid content compared to the control group (P < 0.05), with the lactic acid bacteria treatment group exhibiting the lowest pH value (P < 0.05). Analysis of antioxidant activity and metabolites in oat silage over 60 days revealed 374 differential metabolites with 113 up-regulated and 261 down-regulated, and all treatment groups showing higher antioxidant activity than raw oat materials (P < 0.05). Although no significant differences in antioxidant activity were observed among the various treatment groups in this experiment, notable changes in metabolic pathways were identified. Furthermore, two metabolites (carboxylic acids and derivatives and benzene and substituted derivatives) were identified through non-targeted metabolomics technology, both of which are strongly associated with the antioxidant activity of oat silage. This finding provides a theoretical basis for the efficient use of oat silage in animal husbandry.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"92"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442794/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of lactic acid bacteria and cellulase additives on the fermentation quality, antioxidant activity, and metabolic profile of oat silage.\",\"authors\":\"Xin Wang, Han Liu, Yuan Wang, Yanli Lin, Kuikui Ni, Fuyu Yang\",\"doi\":\"10.1186/s40643-024-00806-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oats (Avena sativa L.) are rich in nutrients and bioactive compounds, serving as a roughage source for ruminants. This study investigated the impact of lactic acid bacteria (LAB), cellulase (M), and their combinations (LM) on the fermentation quality and metabolic compounds of oat silage. Results demonstrated that all additive treatments significantly increased lactic acid content compared to the control group (P < 0.05), with the lactic acid bacteria treatment group exhibiting the lowest pH value (P < 0.05). Analysis of antioxidant activity and metabolites in oat silage over 60 days revealed 374 differential metabolites with 113 up-regulated and 261 down-regulated, and all treatment groups showing higher antioxidant activity than raw oat materials (P < 0.05). Although no significant differences in antioxidant activity were observed among the various treatment groups in this experiment, notable changes in metabolic pathways were identified. Furthermore, two metabolites (carboxylic acids and derivatives and benzene and substituted derivatives) were identified through non-targeted metabolomics technology, both of which are strongly associated with the antioxidant activity of oat silage. This finding provides a theoretical basis for the efficient use of oat silage in animal husbandry.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"11 1\",\"pages\":\"92\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-024-00806-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00806-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effects of lactic acid bacteria and cellulase additives on the fermentation quality, antioxidant activity, and metabolic profile of oat silage.
Oats (Avena sativa L.) are rich in nutrients and bioactive compounds, serving as a roughage source for ruminants. This study investigated the impact of lactic acid bacteria (LAB), cellulase (M), and their combinations (LM) on the fermentation quality and metabolic compounds of oat silage. Results demonstrated that all additive treatments significantly increased lactic acid content compared to the control group (P < 0.05), with the lactic acid bacteria treatment group exhibiting the lowest pH value (P < 0.05). Analysis of antioxidant activity and metabolites in oat silage over 60 days revealed 374 differential metabolites with 113 up-regulated and 261 down-regulated, and all treatment groups showing higher antioxidant activity than raw oat materials (P < 0.05). Although no significant differences in antioxidant activity were observed among the various treatment groups in this experiment, notable changes in metabolic pathways were identified. Furthermore, two metabolites (carboxylic acids and derivatives and benzene and substituted derivatives) were identified through non-targeted metabolomics technology, both of which are strongly associated with the antioxidant activity of oat silage. This finding provides a theoretical basis for the efficient use of oat silage in animal husbandry.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology