{"title":"开发和验证用于尼帕病毒定量的液滴数字 PCR 检测方法。","authors":"Jiangbing Shuai, Kexin Chen, Xiao Han, Ruoxue Zeng, Houhui Song, Linglin Fu, Xiaofeng Zhang","doi":"10.1186/s12917-024-04245-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nipah virus (NiV) is a zoonotic pathogen that poses a significant threat because of its wide host range, multiple transmission modes, high transmissibility, and high mortality rates, affecting both human health and animal husbandry. In this study, we developed a one-step reverse transcription droplet digital PCR (RT-ddPCR) assay that targets the N gene of NiV.</p><p><strong>Results: </strong>Our RT-ddPCR assay exhibited remarkable sensitivity, with a lower limit of detection of 6.91 copies/reaction. Importantly, it displayed no cross-reactivity with the other 13 common viruses and consistently delivered reliable results with a coefficient of variation below 10% across different concentrations. To validate the effectiveness of our RT-ddPCR assay, we detected 75 NiV armored RNA virus samples, mimicking real-world conditions, and negative control samples, and the RT-ddPCR results perfectly matched the simulated results. Furthermore, compared with a standard quantitative real-time PCR (qPCR) assay, our RT-ddPCR assay demonstrated greater stability when handling complex matrices with low viral loads.</p><p><strong>Conclusions: </strong>These findings show that our NiV RT-ddPCR assay is exceptionally sensitive and provides a robust tool for quantitatively detecting NiV, particularly in stimulated field samples with low viral loads or complex matrices. This advancement has significant implications for early NiV monitoring, safeguarding human health and safety, and advancing animal husbandry practices.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a droplet digital PCR assay for Nipah virus quantitation.\",\"authors\":\"Jiangbing Shuai, Kexin Chen, Xiao Han, Ruoxue Zeng, Houhui Song, Linglin Fu, Xiaofeng Zhang\",\"doi\":\"10.1186/s12917-024-04245-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nipah virus (NiV) is a zoonotic pathogen that poses a significant threat because of its wide host range, multiple transmission modes, high transmissibility, and high mortality rates, affecting both human health and animal husbandry. In this study, we developed a one-step reverse transcription droplet digital PCR (RT-ddPCR) assay that targets the N gene of NiV.</p><p><strong>Results: </strong>Our RT-ddPCR assay exhibited remarkable sensitivity, with a lower limit of detection of 6.91 copies/reaction. Importantly, it displayed no cross-reactivity with the other 13 common viruses and consistently delivered reliable results with a coefficient of variation below 10% across different concentrations. To validate the effectiveness of our RT-ddPCR assay, we detected 75 NiV armored RNA virus samples, mimicking real-world conditions, and negative control samples, and the RT-ddPCR results perfectly matched the simulated results. Furthermore, compared with a standard quantitative real-time PCR (qPCR) assay, our RT-ddPCR assay demonstrated greater stability when handling complex matrices with low viral loads.</p><p><strong>Conclusions: </strong>These findings show that our NiV RT-ddPCR assay is exceptionally sensitive and provides a robust tool for quantitatively detecting NiV, particularly in stimulated field samples with low viral loads or complex matrices. This advancement has significant implications for early NiV monitoring, safeguarding human health and safety, and advancing animal husbandry practices.</p>\",\"PeriodicalId\":9041,\"journal\":{\"name\":\"BMC Veterinary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12917-024-04245-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-024-04245-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Development and validation of a droplet digital PCR assay for Nipah virus quantitation.
Background: Nipah virus (NiV) is a zoonotic pathogen that poses a significant threat because of its wide host range, multiple transmission modes, high transmissibility, and high mortality rates, affecting both human health and animal husbandry. In this study, we developed a one-step reverse transcription droplet digital PCR (RT-ddPCR) assay that targets the N gene of NiV.
Results: Our RT-ddPCR assay exhibited remarkable sensitivity, with a lower limit of detection of 6.91 copies/reaction. Importantly, it displayed no cross-reactivity with the other 13 common viruses and consistently delivered reliable results with a coefficient of variation below 10% across different concentrations. To validate the effectiveness of our RT-ddPCR assay, we detected 75 NiV armored RNA virus samples, mimicking real-world conditions, and negative control samples, and the RT-ddPCR results perfectly matched the simulated results. Furthermore, compared with a standard quantitative real-time PCR (qPCR) assay, our RT-ddPCR assay demonstrated greater stability when handling complex matrices with low viral loads.
Conclusions: These findings show that our NiV RT-ddPCR assay is exceptionally sensitive and provides a robust tool for quantitatively detecting NiV, particularly in stimulated field samples with low viral loads or complex matrices. This advancement has significant implications for early NiV monitoring, safeguarding human health and safety, and advancing animal husbandry practices.
期刊介绍:
BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.