{"title":"橙皮素在黑腹果蝇硫酸亚铁诱导毒性模型中的保护作用","authors":"Folake Olubukola Asejeje, Gbolahan Iyiola Asejeje, Olalekan Bukunmi Ogunro, Adeola O Adedara, Amos Olalekan Abolaji","doi":"10.1186/s40360-024-00792-0","DOIUrl":null,"url":null,"abstract":"<p><p>The toxicological hazard of iron-containing products is a public health concern that inspires research in identifying and developing readily available, inexpensive antidotes. Natural products, like plant-sourced antioxidants, can be of great value in this regard. Hesperetin a flavonoid abundantly present in citrus fruits is known to possess a diverse pharmacological and antioxidant attribute. The present study investigated the alleviation of detrimental effects of ferrous sulphate (FeSO<sub>4</sub>) by hesperetin in Drosophila melanogaster. Flies were exposed to FeSO<sub>4</sub> (10 µM) alone or supplemented with hesperetin (50 or 100 µM) via diet for 7 consecutive days. Antioxidant enzyme activities, non-enzymatic antioxidant levels, acetylcholinesterase activity and oxidative stress markers were then measured. Hesperetin supplementation significantly (p < 0.05) attenuated FeSO<sub>4</sub>-induced oxidative stress by enhancement of enzymic antioxidants (catalase and glutathione-S-transferases) activities, preservation of non-enzymic antioxidants (total thiols and non-protein thiols), and reduction of other markers of oxidative stress (hydrogen peroxide, protein carbonyl and lipid peroxidation) in D. melanogaster. In addition, hesperetin supplementation decreased nitric oxide levels and enhanced acetylcholinesterase activity. Furthermore, hesperetin supplementation improved FeSO<sub>4</sub>-induced locomotor deficit, while there was no significant difference in cell viability (mitochondrial metabolic rate) in the treatment groups. This study suggests that hesperetin might be a promising functional agent in preventing iron toxicity and similar metal-induced impairments.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"70"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protective role of hesperetin in Drosophila melanogaster model of ferrous sulphate-induced toxicity.\",\"authors\":\"Folake Olubukola Asejeje, Gbolahan Iyiola Asejeje, Olalekan Bukunmi Ogunro, Adeola O Adedara, Amos Olalekan Abolaji\",\"doi\":\"10.1186/s40360-024-00792-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The toxicological hazard of iron-containing products is a public health concern that inspires research in identifying and developing readily available, inexpensive antidotes. Natural products, like plant-sourced antioxidants, can be of great value in this regard. Hesperetin a flavonoid abundantly present in citrus fruits is known to possess a diverse pharmacological and antioxidant attribute. The present study investigated the alleviation of detrimental effects of ferrous sulphate (FeSO<sub>4</sub>) by hesperetin in Drosophila melanogaster. Flies were exposed to FeSO<sub>4</sub> (10 µM) alone or supplemented with hesperetin (50 or 100 µM) via diet for 7 consecutive days. Antioxidant enzyme activities, non-enzymatic antioxidant levels, acetylcholinesterase activity and oxidative stress markers were then measured. Hesperetin supplementation significantly (p < 0.05) attenuated FeSO<sub>4</sub>-induced oxidative stress by enhancement of enzymic antioxidants (catalase and glutathione-S-transferases) activities, preservation of non-enzymic antioxidants (total thiols and non-protein thiols), and reduction of other markers of oxidative stress (hydrogen peroxide, protein carbonyl and lipid peroxidation) in D. melanogaster. In addition, hesperetin supplementation decreased nitric oxide levels and enhanced acetylcholinesterase activity. Furthermore, hesperetin supplementation improved FeSO<sub>4</sub>-induced locomotor deficit, while there was no significant difference in cell viability (mitochondrial metabolic rate) in the treatment groups. This study suggests that hesperetin might be a promising functional agent in preventing iron toxicity and similar metal-induced impairments.</p>\",\"PeriodicalId\":9023,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":\"25 1\",\"pages\":\"70\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-024-00792-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-024-00792-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Protective role of hesperetin in Drosophila melanogaster model of ferrous sulphate-induced toxicity.
The toxicological hazard of iron-containing products is a public health concern that inspires research in identifying and developing readily available, inexpensive antidotes. Natural products, like plant-sourced antioxidants, can be of great value in this regard. Hesperetin a flavonoid abundantly present in citrus fruits is known to possess a diverse pharmacological and antioxidant attribute. The present study investigated the alleviation of detrimental effects of ferrous sulphate (FeSO4) by hesperetin in Drosophila melanogaster. Flies were exposed to FeSO4 (10 µM) alone or supplemented with hesperetin (50 or 100 µM) via diet for 7 consecutive days. Antioxidant enzyme activities, non-enzymatic antioxidant levels, acetylcholinesterase activity and oxidative stress markers were then measured. Hesperetin supplementation significantly (p < 0.05) attenuated FeSO4-induced oxidative stress by enhancement of enzymic antioxidants (catalase and glutathione-S-transferases) activities, preservation of non-enzymic antioxidants (total thiols and non-protein thiols), and reduction of other markers of oxidative stress (hydrogen peroxide, protein carbonyl and lipid peroxidation) in D. melanogaster. In addition, hesperetin supplementation decreased nitric oxide levels and enhanced acetylcholinesterase activity. Furthermore, hesperetin supplementation improved FeSO4-induced locomotor deficit, while there was no significant difference in cell viability (mitochondrial metabolic rate) in the treatment groups. This study suggests that hesperetin might be a promising functional agent in preventing iron toxicity and similar metal-induced impairments.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.