Veronika Juráková, Balázs Széky, Martina Zapletalová, Anita Fehér, Melinda Zana, Shashank Pandey, Radek Kučera, Omar Šerý, Jiří Hudeček, András Dinnyés, Jan Lochman
{"title":"评估和评价从 hiPSCs 分化星形胶质细胞的当代方法:阿尔茨海默病建模范例。","authors":"Veronika Juráková, Balázs Széky, Martina Zapletalová, Anita Fehér, Melinda Zana, Shashank Pandey, Radek Kučera, Omar Šerý, Jiří Hudeček, András Dinnyés, Jan Lochman","doi":"10.1186/s12575-024-00257-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation.</p><p><strong>Results: </strong>We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes.</p><p><strong>Conclusions: </strong>Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"26 1","pages":"30"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437813/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease.\",\"authors\":\"Veronika Juráková, Balázs Széky, Martina Zapletalová, Anita Fehér, Melinda Zana, Shashank Pandey, Radek Kučera, Omar Šerý, Jiří Hudeček, András Dinnyés, Jan Lochman\",\"doi\":\"10.1186/s12575-024-00257-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation.</p><p><strong>Results: </strong>We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes.</p><p><strong>Conclusions: </strong>Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.</p>\",\"PeriodicalId\":8960,\"journal\":{\"name\":\"Biological Procedures Online\",\"volume\":\"26 1\",\"pages\":\"30\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Procedures Online\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12575-024-00257-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-024-00257-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease.
Background: Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation.
Results: We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes.
Conclusions: Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.