{"title":"优化微生物电解池性能:减轻膜上电子介质降解的策略。","authors":"Shuo Zhao, Yu Zeng, Ying Li, Zhen Wang, Li Chen, Kequan Chen","doi":"10.1007/s10529-024-03533-9","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation probes the role of the electron mediator, neutral red (NR), in the electrosynthesis process, specifically examining its effect on the production of succinic acid by Actinobacillus succinogenes. Our findings reveal that NR, when integrated into the cell membrane, is pivotal for sustaining MEC efficiency. Nevertheless, it is susceptible to both intrinsic and MECs-induced degradation. Notably, during the exponential growth phase of the bacteria, NR is readily incorporated into the cell membrane. However, the supplemental addition of NR fails to significantly enhance the MEC's capacity for succinic acid synthesis, no matter what stage of bacterial growth. And significant depletion of membrane-associated NR is not adequately compensated by the NR present in the fermentation liquid. The ORP feedback-regulated MECs adeptly conserve the NR on the cell membrane, which is essential for maintaining the efficiency of long-term electrosynthesis. The presence of NR on the cell membrane is essential for the functionality of MECs, yet its external replenishment hard. Implementing precise electro-potential regulation strategies can effectively diminish the degradation of NR, thus maintaining the system's efficiency.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"1027-1035"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing microbial electrolysis cell performance: strategies to mitigate electron mediator degradation on membranes.\",\"authors\":\"Shuo Zhao, Yu Zeng, Ying Li, Zhen Wang, Li Chen, Kequan Chen\",\"doi\":\"10.1007/s10529-024-03533-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This investigation probes the role of the electron mediator, neutral red (NR), in the electrosynthesis process, specifically examining its effect on the production of succinic acid by Actinobacillus succinogenes. Our findings reveal that NR, when integrated into the cell membrane, is pivotal for sustaining MEC efficiency. Nevertheless, it is susceptible to both intrinsic and MECs-induced degradation. Notably, during the exponential growth phase of the bacteria, NR is readily incorporated into the cell membrane. However, the supplemental addition of NR fails to significantly enhance the MEC's capacity for succinic acid synthesis, no matter what stage of bacterial growth. And significant depletion of membrane-associated NR is not adequately compensated by the NR present in the fermentation liquid. The ORP feedback-regulated MECs adeptly conserve the NR on the cell membrane, which is essential for maintaining the efficiency of long-term electrosynthesis. The presence of NR on the cell membrane is essential for the functionality of MECs, yet its external replenishment hard. Implementing precise electro-potential regulation strategies can effectively diminish the degradation of NR, thus maintaining the system's efficiency.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\" \",\"pages\":\"1027-1035\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-024-03533-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03533-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探究了电子介质中性红(NR)在电合成过程中的作用,特别是其对琥珀酸放线杆菌生产琥珀酸的影响。我们的研究结果表明,中性红融入细胞膜后,对维持 MEC 的效率至关重要。不过,它也容易受到内在降解和 MEC 诱导的降解的影响。值得注意的是,在细菌的指数生长阶段,NR很容易与细胞膜结合。然而,无论细菌生长到哪个阶段,补充 NR 都无法显著提高 MEC 合成琥珀酸的能力。而发酵液中的 NR 并不能充分补偿膜相关 NR 的大量消耗。受 ORP 反馈调节的 MEC 能有效地保存细胞膜上的 NR,这对维持长期电合成的效率至关重要。细胞膜上 NR 的存在对 MEC 的功能至关重要,但其外部补充却很困难。实施精确的电位调节策略可以有效减少 NR 的降解,从而维持系统的效率。
Optimizing microbial electrolysis cell performance: strategies to mitigate electron mediator degradation on membranes.
This investigation probes the role of the electron mediator, neutral red (NR), in the electrosynthesis process, specifically examining its effect on the production of succinic acid by Actinobacillus succinogenes. Our findings reveal that NR, when integrated into the cell membrane, is pivotal for sustaining MEC efficiency. Nevertheless, it is susceptible to both intrinsic and MECs-induced degradation. Notably, during the exponential growth phase of the bacteria, NR is readily incorporated into the cell membrane. However, the supplemental addition of NR fails to significantly enhance the MEC's capacity for succinic acid synthesis, no matter what stage of bacterial growth. And significant depletion of membrane-associated NR is not adequately compensated by the NR present in the fermentation liquid. The ORP feedback-regulated MECs adeptly conserve the NR on the cell membrane, which is essential for maintaining the efficiency of long-term electrosynthesis. The presence of NR on the cell membrane is essential for the functionality of MECs, yet its external replenishment hard. Implementing precise electro-potential regulation strategies can effectively diminish the degradation of NR, thus maintaining the system's efficiency.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.