基于血液的 DNA 甲基化和暴露风险评分可高度准确地预测军人和平民队列中的创伤后应激障碍。

IF 2.1 4区 医学 Q3 GENETICS & HEREDITY
Agaz H Wani, Seyma Katrinli, Xiang Zhao, Nikolaos P Daskalakis, Anthony S Zannas, Allison E Aiello, Dewleen G Baker, Marco P Boks, Leslie A Brick, Chia-Yen Chen, Shareefa Dalvie, Catherine Fortier, Elbert Geuze, Jasmeet P Hayes, Ronald C Kessler, Anthony P King, Nastassja Koen, Israel Liberzon, Adriana Lori, Jurjen J Luykx, Adam X Maihofer, William Milberg, Mark W Miller, Mary S Mufford, Nicole R Nugent, Sheila Rauch, Kerry J Ressler, Victoria B Risbrough, Bart P F Rutten, Dan J Stein, Murray B Stein, Robert J Ursano, Mieke H Verfaellie, Eric Vermetten, Christiaan H Vinkers, Erin B Ware, Derek E Wildman, Erika J Wolf, Caroline M Nievergelt, Mark W Logue, Alicia K Smith, Monica Uddin
{"title":"基于血液的 DNA 甲基化和暴露风险评分可高度准确地预测军人和平民队列中的创伤后应激障碍。","authors":"Agaz H Wani, Seyma Katrinli, Xiang Zhao, Nikolaos P Daskalakis, Anthony S Zannas, Allison E Aiello, Dewleen G Baker, Marco P Boks, Leslie A Brick, Chia-Yen Chen, Shareefa Dalvie, Catherine Fortier, Elbert Geuze, Jasmeet P Hayes, Ronald C Kessler, Anthony P King, Nastassja Koen, Israel Liberzon, Adriana Lori, Jurjen J Luykx, Adam X Maihofer, William Milberg, Mark W Miller, Mary S Mufford, Nicole R Nugent, Sheila Rauch, Kerry J Ressler, Victoria B Risbrough, Bart P F Rutten, Dan J Stein, Murray B Stein, Robert J Ursano, Mieke H Verfaellie, Eric Vermetten, Christiaan H Vinkers, Erin B Ware, Derek E Wildman, Erika J Wolf, Caroline M Nievergelt, Mark W Logue, Alicia K Smith, Monica Uddin","doi":"10.1186/s12920-024-02002-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Incorporating genomic data into risk prediction has become an increasingly popular approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not.</p><p><strong>Methods: </strong>Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts.</p><p><strong>Results: </strong>The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p=0.006), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD.</p><p><strong>Conclusion: </strong>The inclusion of exposure variables adds to the predictive power of MRS. Classification-based MRS may be useful in predicting risk of future PTSD in populations with anticipated trauma exposure. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting PTSD and, relatedly, improve their performance in independent cohorts.</p>","PeriodicalId":8915,"journal":{"name":"BMC Medical Genomics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blood-based DNA methylation and exposure risk scores predict PTSD with high accuracy in military and civilian cohorts.\",\"authors\":\"Agaz H Wani, Seyma Katrinli, Xiang Zhao, Nikolaos P Daskalakis, Anthony S Zannas, Allison E Aiello, Dewleen G Baker, Marco P Boks, Leslie A Brick, Chia-Yen Chen, Shareefa Dalvie, Catherine Fortier, Elbert Geuze, Jasmeet P Hayes, Ronald C Kessler, Anthony P King, Nastassja Koen, Israel Liberzon, Adriana Lori, Jurjen J Luykx, Adam X Maihofer, William Milberg, Mark W Miller, Mary S Mufford, Nicole R Nugent, Sheila Rauch, Kerry J Ressler, Victoria B Risbrough, Bart P F Rutten, Dan J Stein, Murray B Stein, Robert J Ursano, Mieke H Verfaellie, Eric Vermetten, Christiaan H Vinkers, Erin B Ware, Derek E Wildman, Erika J Wolf, Caroline M Nievergelt, Mark W Logue, Alicia K Smith, Monica Uddin\",\"doi\":\"10.1186/s12920-024-02002-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Incorporating genomic data into risk prediction has become an increasingly popular approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not.</p><p><strong>Methods: </strong>Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts.</p><p><strong>Results: </strong>The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p=0.006), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD.</p><p><strong>Conclusion: </strong>The inclusion of exposure variables adds to the predictive power of MRS. Classification-based MRS may be useful in predicting risk of future PTSD in populations with anticipated trauma exposure. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting PTSD and, relatedly, improve their performance in independent cohorts.</p>\",\"PeriodicalId\":8915,\"journal\":{\"name\":\"BMC Medical Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12920-024-02002-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12920-024-02002-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:将基因组数据纳入风险预测已成为一种日益流行的方法,用于快速识别创伤后应激障碍等复杂疾病的高危人群。我们的目标是利用机器学习开发和验证甲基化风险评分(MRS),以区分创伤后应激障碍患者和非创伤后应激障碍患者:我们使用弹性网络(Elastic Net)开发了三个风险评分模型,使用的是一个发现数据集(n = 1226;314 例,912 例对照),该数据集由 5 个不同的队列组成,其血液中的 DNA 甲基化(DNAm)是在 Illumina Epic BeadChip 上测量的。第一个风险评分,即暴露和甲基化风险评分(eMRS)使用了累积和儿童创伤暴露以及 DNAm 变量;第二个风险评分,即仅甲基化风险评分(MoRS)仅基于 DNAm 数据;第三个风险评分,即具有调整暴露变量的仅甲基化风险评分(MoRSAE)利用了针对两个暴露变量进行调整的 DNAm 数据。此外,还评估了这些风险评分根据部署前数据预测未来创伤后应激障碍的潜力。在四个独立队列中对风险评分进行了外部验证:在使用 3730 个特征对创伤后应激障碍进行分类时,eMRS 模型显示出最高的准确率(92%)、精确率(91%)、召回率(87%)和 f1 分数(89%)。使用 3728 个特征的 MoRS(准确率 = 89%)和使用 4150 个特征的 MoRSAE(准确率 = 84%)虽然准确率仍然很高,但分类能力却有所下降。在四个独立队列中,eMRS 可显著预测 BEAR 队列中的创伤后应激障碍(β = 0.6839,p=0.006),但在其余三个队列中却不能。所有模型中的部署前风险评分(eMRS,贝塔=1.92;MoRS,贝塔=1.99;MoRSAE,贝塔=1.77)都显示出显著的(p 结论:在所有模型中,部署前风险评分都显示出显著的(p 结论:在所有模型中,部署前风险评分都显示出显著的(p 结论):纳入暴露变量可提高 MRS 的预测能力。基于分类的 MRS 可能有助于预测预期有创伤暴露的人群未来患创伤后应激障碍的风险。随着数据的增多,在这些评分中加入更多的分子、环境和社会心理因素可能会提高其预测创伤后应激障碍的准确性,从而改善其在独立队列中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blood-based DNA methylation and exposure risk scores predict PTSD with high accuracy in military and civilian cohorts.

Background: Incorporating genomic data into risk prediction has become an increasingly popular approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not.

Methods: Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts.

Results: The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p=0.006), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD.

Conclusion: The inclusion of exposure variables adds to the predictive power of MRS. Classification-based MRS may be useful in predicting risk of future PTSD in populations with anticipated trauma exposure. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting PTSD and, relatedly, improve their performance in independent cohorts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Genomics
BMC Medical Genomics 医学-遗传学
CiteScore
3.90
自引率
0.00%
发文量
243
审稿时长
3.5 months
期刊介绍: BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信