Gyeongpyo Kim, Seoyoung Park, Minsuk Koo, Sungjun Kim
{"title":"经等离子氧处理的铝/TaOX/铝电阻存储器可增强突触特性。","authors":"Gyeongpyo Kim, Seoyoung Park, Minsuk Koo, Sungjun Kim","doi":"10.3390/biomimetics9090578","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigate the impact of O<sub>2</sub> plasma treatment on the performance of Al/TaO<sub>X</sub>/Al-based resistive random-access memory (RRAM) devices, focusing on applications in neuromorphic systems. Comparative analysis using scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the differences in chemical composition between O<sub>2</sub>-plasma-treated and untreated RRAM cells. Direct-current measurements showed that O<sub>2</sub>-plasma-treated RRAM cells exhibited significant improvements over untreated RRAM cells, including higher on/off ratios, improved uniformity and distribution, longer retention times, and enhanced durability. The conduction mechanism is investigated by current-voltage (I-V) curve fitting. In addition, paired-pulse facilitation (PPF) is observed using partial short-term memory. Furthermore, 3- and 4-bit weight tuning with auto-pulse-tuning algorithms was achieved to improve the controllability of the synapse weight for the neuromorphic system, maintaining retention times exceeding 10<sup>3</sup> s in the multiple states. Neuromorphic simulation with an MNIST dataset is conducted to evaluate the synaptic device.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Plasma-Treated Al/TaO<sub>X</sub>/Al Resistive Memory for Enhanced Synaptic Characteristics.\",\"authors\":\"Gyeongpyo Kim, Seoyoung Park, Minsuk Koo, Sungjun Kim\",\"doi\":\"10.3390/biomimetics9090578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we investigate the impact of O<sub>2</sub> plasma treatment on the performance of Al/TaO<sub>X</sub>/Al-based resistive random-access memory (RRAM) devices, focusing on applications in neuromorphic systems. Comparative analysis using scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the differences in chemical composition between O<sub>2</sub>-plasma-treated and untreated RRAM cells. Direct-current measurements showed that O<sub>2</sub>-plasma-treated RRAM cells exhibited significant improvements over untreated RRAM cells, including higher on/off ratios, improved uniformity and distribution, longer retention times, and enhanced durability. The conduction mechanism is investigated by current-voltage (I-V) curve fitting. In addition, paired-pulse facilitation (PPF) is observed using partial short-term memory. Furthermore, 3- and 4-bit weight tuning with auto-pulse-tuning algorithms was achieved to improve the controllability of the synapse weight for the neuromorphic system, maintaining retention times exceeding 10<sup>3</sup> s in the multiple states. Neuromorphic simulation with an MNIST dataset is conducted to evaluate the synaptic device.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9090578\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9090578","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxygen-Plasma-Treated Al/TaOX/Al Resistive Memory for Enhanced Synaptic Characteristics.
In this study, we investigate the impact of O2 plasma treatment on the performance of Al/TaOX/Al-based resistive random-access memory (RRAM) devices, focusing on applications in neuromorphic systems. Comparative analysis using scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the differences in chemical composition between O2-plasma-treated and untreated RRAM cells. Direct-current measurements showed that O2-plasma-treated RRAM cells exhibited significant improvements over untreated RRAM cells, including higher on/off ratios, improved uniformity and distribution, longer retention times, and enhanced durability. The conduction mechanism is investigated by current-voltage (I-V) curve fitting. In addition, paired-pulse facilitation (PPF) is observed using partial short-term memory. Furthermore, 3- and 4-bit weight tuning with auto-pulse-tuning algorithms was achieved to improve the controllability of the synapse weight for the neuromorphic system, maintaining retention times exceeding 103 s in the multiple states. Neuromorphic simulation with an MNIST dataset is conducted to evaluate the synaptic device.