E V Sarygina, A S Kozlova, E A Ponomarenko, E V Ilgisonis
{"title":"作为技术发展功能的人类蛋白质组规模。","authors":"E V Sarygina, A S Kozlova, E A Ponomarenko, E V Ilgisonis","doi":"10.18097/PBMC20247005364","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in information on the number of human proteoforms, post-translational modification (PTM) events, alternative splicing (AS), single-amino acid polymorphisms (SAP) associated with protein-coding genes in the neXtProt database have been retrospectively analyzed. In 2016, our group proposed three mathematical models for predicting the number of different proteins (proteoforms) in the human proteome. Eight years later, we compared the original data of the information resources and their contribution to the prediction results, correlating the differences with new approaches to experimental and bioinformatic analysis of protein modifications. The aim of this work is to update information on the status of records in the databases of identified proteoforms since 2016, as well as to identify trends in changes in the quantities of these records. According to various information models, modern experimental methods may identify from 5 to 125 million different proteoforms: the proteins formed due to alternative splicing, the implementation of single nucleotide polymorphisms at the proteomic level, and post-translational modifications in various combinations. This result reflects an increase in the size of the human proteome by 20 or more times over the past 8 years.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"70 5","pages":"364-373"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The human proteome size as a technological development function.\",\"authors\":\"E V Sarygina, A S Kozlova, E A Ponomarenko, E V Ilgisonis\",\"doi\":\"10.18097/PBMC20247005364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Changes in information on the number of human proteoforms, post-translational modification (PTM) events, alternative splicing (AS), single-amino acid polymorphisms (SAP) associated with protein-coding genes in the neXtProt database have been retrospectively analyzed. In 2016, our group proposed three mathematical models for predicting the number of different proteins (proteoforms) in the human proteome. Eight years later, we compared the original data of the information resources and their contribution to the prediction results, correlating the differences with new approaches to experimental and bioinformatic analysis of protein modifications. The aim of this work is to update information on the status of records in the databases of identified proteoforms since 2016, as well as to identify trends in changes in the quantities of these records. According to various information models, modern experimental methods may identify from 5 to 125 million different proteoforms: the proteins formed due to alternative splicing, the implementation of single nucleotide polymorphisms at the proteomic level, and post-translational modifications in various combinations. This result reflects an increase in the size of the human proteome by 20 or more times over the past 8 years.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":\"70 5\",\"pages\":\"364-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20247005364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20247005364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The human proteome size as a technological development function.
Changes in information on the number of human proteoforms, post-translational modification (PTM) events, alternative splicing (AS), single-amino acid polymorphisms (SAP) associated with protein-coding genes in the neXtProt database have been retrospectively analyzed. In 2016, our group proposed three mathematical models for predicting the number of different proteins (proteoforms) in the human proteome. Eight years later, we compared the original data of the information resources and their contribution to the prediction results, correlating the differences with new approaches to experimental and bioinformatic analysis of protein modifications. The aim of this work is to update information on the status of records in the databases of identified proteoforms since 2016, as well as to identify trends in changes in the quantities of these records. According to various information models, modern experimental methods may identify from 5 to 125 million different proteoforms: the proteins formed due to alternative splicing, the implementation of single nucleotide polymorphisms at the proteomic level, and post-translational modifications in various combinations. This result reflects an increase in the size of the human proteome by 20 or more times over the past 8 years.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).