{"title":"迭代囚徒困境中合作与公平的神经机制","authors":"Xizhuo Zou , Dandan Li , Ofir Turel , Qinghua He","doi":"10.1016/j.bbr.2024.115272","DOIUrl":null,"url":null,"abstract":"<div><div>Cooperation is a universal human principle reflecting working with others to achieve common goals. The rational decision-making model contends that cooperation is the best strategy for maximizing benefits in an iterative prisoner’s dilemma. However, the motivations for cooperation (or betrayal) are complex and diverse, and often include fairness reflections. In this study, we used functional magnetic resonance imaging to study underlying neural differences in brain regions related to fairness when people interact with an opponent who tend to cooperate or betray, at different decision-making stages. Results based on 40 university students (25 women) indicate that experiences of cooperation or betrayal affect people’s fairness perception. Distinct neural activities occur in expectation, decision, and outcome phases of decisions. In the expectation phase, those in the cooperative condition exhibited increased activation in the anterior cingulate gyrus, medial superior frontal gyrus, and caudate nucleus compared to those in the uncooperative condition. During the decision phase, those in the cooperative condition showed greater activation in the middle frontal gyrus, caudate nucleus/frontal insula, inferior frontal gyrus, and cingulate gyrus compared to those in the uncooperative condition. In the outcome feedback phase, the caudate nucleus, insula, cingulate gyrus, and inferior frontal gyrus of the orbit were more active in the uncooperative condition than in the cooperative condition. Results also showed a significant correlation between caudate activity and the perception of fairness when expecting uncooperative conditions.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural mechanisms of cooperation and fairness in iterative prisoner’s dilemma\",\"authors\":\"Xizhuo Zou , Dandan Li , Ofir Turel , Qinghua He\",\"doi\":\"10.1016/j.bbr.2024.115272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cooperation is a universal human principle reflecting working with others to achieve common goals. The rational decision-making model contends that cooperation is the best strategy for maximizing benefits in an iterative prisoner’s dilemma. However, the motivations for cooperation (or betrayal) are complex and diverse, and often include fairness reflections. In this study, we used functional magnetic resonance imaging to study underlying neural differences in brain regions related to fairness when people interact with an opponent who tend to cooperate or betray, at different decision-making stages. Results based on 40 university students (25 women) indicate that experiences of cooperation or betrayal affect people’s fairness perception. Distinct neural activities occur in expectation, decision, and outcome phases of decisions. In the expectation phase, those in the cooperative condition exhibited increased activation in the anterior cingulate gyrus, medial superior frontal gyrus, and caudate nucleus compared to those in the uncooperative condition. During the decision phase, those in the cooperative condition showed greater activation in the middle frontal gyrus, caudate nucleus/frontal insula, inferior frontal gyrus, and cingulate gyrus compared to those in the uncooperative condition. In the outcome feedback phase, the caudate nucleus, insula, cingulate gyrus, and inferior frontal gyrus of the orbit were more active in the uncooperative condition than in the cooperative condition. Results also showed a significant correlation between caudate activity and the perception of fairness when expecting uncooperative conditions.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824004285\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004285","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Neural mechanisms of cooperation and fairness in iterative prisoner’s dilemma
Cooperation is a universal human principle reflecting working with others to achieve common goals. The rational decision-making model contends that cooperation is the best strategy for maximizing benefits in an iterative prisoner’s dilemma. However, the motivations for cooperation (or betrayal) are complex and diverse, and often include fairness reflections. In this study, we used functional magnetic resonance imaging to study underlying neural differences in brain regions related to fairness when people interact with an opponent who tend to cooperate or betray, at different decision-making stages. Results based on 40 university students (25 women) indicate that experiences of cooperation or betrayal affect people’s fairness perception. Distinct neural activities occur in expectation, decision, and outcome phases of decisions. In the expectation phase, those in the cooperative condition exhibited increased activation in the anterior cingulate gyrus, medial superior frontal gyrus, and caudate nucleus compared to those in the uncooperative condition. During the decision phase, those in the cooperative condition showed greater activation in the middle frontal gyrus, caudate nucleus/frontal insula, inferior frontal gyrus, and cingulate gyrus compared to those in the uncooperative condition. In the outcome feedback phase, the caudate nucleus, insula, cingulate gyrus, and inferior frontal gyrus of the orbit were more active in the uncooperative condition than in the cooperative condition. Results also showed a significant correlation between caudate activity and the perception of fairness when expecting uncooperative conditions.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.