{"title":"重新评估皮肤过敏性休克的典型 PAF 通路。","authors":"Tomoyuki Suzuki , Yoshitaka Taketomi , Keisuke Yanagida , Tomomi Yoshida-Hashidate , Takahide Nagase , Makoto Murakami , Takao Shimizu , Hideo Shindou","doi":"10.1016/j.bbalip.2024.159563","DOIUrl":null,"url":null,"abstract":"<div><div>Platelet-activating factor (PAF) is a potent classical lipid mediator that plays a critical role in various diseases such as allergy and nervous system disorders. In the realm of allergy, previous studies suggested that PAF is generated in response to extracellular stimuli and contributes to allergic reactions <em>via</em> PAF receptor (PAFR). However, the sources of endogenous PAF and its pathophysiological dynamics remain largely elusive <em>in vivo</em>. Here, we report that rapid and local PAF generation completely depends on lysophospholipid acyltransferase 9 (LPLAT9, also known as LPCAT2) expressed in mast cells in IgE-mediated passive cutaneous anaphylaxis. However, we found that LPLAT9 knockout (KO) mice did not display attenuated vascular leakage. Additionally, decreased vascular leakage was observed in PAFR KO mice, but not in endothelial cell-specific mice in this model. These divergences highlight a yet unsolved complexity of the biological functions of PAF and PAFR in a pathophysiological process.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 1","pages":"Article 159563"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-evaluation of the canonical PAF pathway in cutaneous anaphylaxis\",\"authors\":\"Tomoyuki Suzuki , Yoshitaka Taketomi , Keisuke Yanagida , Tomomi Yoshida-Hashidate , Takahide Nagase , Makoto Murakami , Takao Shimizu , Hideo Shindou\",\"doi\":\"10.1016/j.bbalip.2024.159563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Platelet-activating factor (PAF) is a potent classical lipid mediator that plays a critical role in various diseases such as allergy and nervous system disorders. In the realm of allergy, previous studies suggested that PAF is generated in response to extracellular stimuli and contributes to allergic reactions <em>via</em> PAF receptor (PAFR). However, the sources of endogenous PAF and its pathophysiological dynamics remain largely elusive <em>in vivo</em>. Here, we report that rapid and local PAF generation completely depends on lysophospholipid acyltransferase 9 (LPLAT9, also known as LPCAT2) expressed in mast cells in IgE-mediated passive cutaneous anaphylaxis. However, we found that LPLAT9 knockout (KO) mice did not display attenuated vascular leakage. Additionally, decreased vascular leakage was observed in PAFR KO mice, but not in endothelial cell-specific mice in this model. These divergences highlight a yet unsolved complexity of the biological functions of PAF and PAFR in a pathophysiological process.</div></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1870 1\",\"pages\":\"Article 159563\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198124001136\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124001136","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Re-evaluation of the canonical PAF pathway in cutaneous anaphylaxis
Platelet-activating factor (PAF) is a potent classical lipid mediator that plays a critical role in various diseases such as allergy and nervous system disorders. In the realm of allergy, previous studies suggested that PAF is generated in response to extracellular stimuli and contributes to allergic reactions via PAF receptor (PAFR). However, the sources of endogenous PAF and its pathophysiological dynamics remain largely elusive in vivo. Here, we report that rapid and local PAF generation completely depends on lysophospholipid acyltransferase 9 (LPLAT9, also known as LPCAT2) expressed in mast cells in IgE-mediated passive cutaneous anaphylaxis. However, we found that LPLAT9 knockout (KO) mice did not display attenuated vascular leakage. Additionally, decreased vascular leakage was observed in PAFR KO mice, but not in endothelial cell-specific mice in this model. These divergences highlight a yet unsolved complexity of the biological functions of PAF and PAFR in a pathophysiological process.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.