Ozlem Ergul Erkec, Zubeyir Huyut, Eda Acikgoz, Mehmet Tahir Huyut
{"title":"外源性胃泌素对脂肪喂养链脲佐菌素大鼠模型氧化应激、炎症和组织学参数的影响","authors":"Ozlem Ergul Erkec, Zubeyir Huyut, Eda Acikgoz, Mehmet Tahir Huyut","doi":"10.1080/13813455.2024.2407551","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model.\",\"authors\":\"Ozlem Ergul Erkec, Zubeyir Huyut, Eda Acikgoz, Mehmet Tahir Huyut\",\"doi\":\"10.1080/13813455.2024.2407551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2024.2407551\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2024.2407551","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model.
In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.